
Loss function 
• DNN needs to learn the mode of  : mode  

• Assumption:  distribution is close to a gaussian: 

• Estimators of  (and ) can be obtained from: 

• Then a DNN trained with this loss: 
 
 
 
 
Will minimise the log-likelihood and predict  and  
→ This is called a Mixture Density Network (MDN) 

• DNN then outputs:  for both  

and .   is then interpreted as  

• In practice  is not perfectly gaussian, training uses: 
• truncated MDN loss to avoid non-gaussianities in the 

distributions tails 
• asymmetric MDN loss (MDNA) to avoid baises from 

asymmetric distributions
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Fig. 1: Idealised uncalibrated energy response 
distribution and calibration principle

Performance and validation 
procedure 

• Two measurements: 

• response closure: in bins of ,
 

• response resolution:  

• Compared with the standard calibration method, the 
DNN calibration: 

• performs better in almost all the phase space: 
•  in terms of closure and resolution 
• on QCD jets and boosted topologies 

• shows a lower dependency on:  
• pile-up 
• jet flavour → smaller systematic uncertainties 
• jet spectrum → no biases from input distributions 
• MC generators → can be applied to other MC 

generators and data 

• DNN calibration should replace the actual numerical 
method for the consolidated recommendations of Run-3 
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RE = mode(rE) → 1
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Generator dependency
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Topology dependency
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Energy calibration performance

Calibration of large-R jets measured 
with the ATLAS detector using a DNN

Pierre-Antoine Delsart (CNRS, LPSC-IN2P3 Grenoble) on behalf of the ATLAS Collaboration 
Main reference: CERN-EP-2023-250, arXiv:2311.08885

Introduction 
The energy and mass measurements of jets are crucial tasks for the Large Hadron Collider (LHC) experiments. This paper presents a new calibration method to simultaneously calibrate 
these quantities for large-radius jets measured with the ATLAS detector using a deep neural network (DNN). To address the specificities of the calibration problem, special loss functions 
and training procedures are employed, and a complex network architecture, which includes feature-annotation and residual connection-like layers, is used. The DNN-based calibration is 
compared to the standard numerical approach in an extensive set of tests. The DNN approach is found to perform significantly better in almost all the tests and over most of the covered 
phase space. In particular, it consistently improves the energy and mass resolutions, with a 30% better energy resolution obtained for  GeV. pT > 500

6th Inter-experiment Machine Learning Workshop - Poster Session 
CERN 27 November 2023

 annotation 
•  or  response dependency on  is very complex due 

to the segmentations of the calorimeters 
• Leads to sharp variations of the response in small 

intervals of  
→ Important difficulty for the DNN to adapt its 
predictions 

• Specific solution: addition of an input preparation step 
called -annotation 

• Computes extra features based on  to encode the 
proximity of the jet to the different regions of the detector 

   → Helps the DNN to adapt to the complex response       
dependency on 

η
E m η

η

η
η

η

Residual connection 
• Additional multiplicative residual connection for the 

mass prediction 
• Extra layers linking the input layer directly to the mass 

output 
• Makes the DNN learn which inputs are the most 

important for the mass calibration 
• Only necessary for the mass calibration, energy 

calibration already shows good performance. 

DNN calibration principle 
• Goal: simultaneous calibration of the energy and mass of large-R jets ( ) 
• Method:  

• use one DNN to predict the  and  response ( , ) for any large-R jet 

• DNN predicts the mode of the response distribution: 

•    as a function of ,  for  or  and  

                                                           input reconstructed variables, DNN trainable parameters 

•  then    

• Why mode and not individual response ? → Not possible to predict individual responses : to one true jet corresponds a 
distribution of possible responses. 

• Mode and not mean ? → To avoid biases from possible asymmetric distributions, is the most probable value of the 
distributions.
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⃗xreco = θ =

Xcalib =
Xreco

RDNN

Table 1 : Input features

Name Definition

Jet level
E Energy of the jet in GeV, the log of E is taken to reduce the spread of its distribution
m Mass of the jet in GeV, the log of m is taken to reduce the spread of its distribution
⌘ Jet pseudorapidity

Substructure level

groomMRatio Mass ratio between groomed and ungroomed jets
Width

P
i pTi�R(i, jet)/(

P
i pTi) where �R is the angular distance (sum over the jet constituents)

Split12,Split23 Splitting scales at the 1st and 2nd exclusive kT declusterings
C2, D2 Energy correlation ratios
⌧21, ⌧32 N-Subjettiness ratios using WTA axis

Qw Smallest invariant mass among the proto-jets pairs of the last 3 steps of a kT reclustering sequence

Detector level

EMFrac Energy fraction deposited in the electromagnetic calorimeter
EM3Frac Energy fraction deposited in the third layer of the electromagnetic calorimeter
Tile0Frac Energy fraction deposited in the 1st layer of the hadronic calorimeter

E↵NConsts (
P

i Ei)2/(
P

i E
2
i ) (sum over the jet constituents)

NeutralFrac Energy fraction from neutral constituents
ChargedPTFrac pT fraction from charged constituents
ChargedMFrac Mass fraction from charged constituents

Event level
µ Mean number of interactions per bunch crossing

NPV Number of primary vertices per event
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Fig. 2: DNN architecture

Fig. 3: Training principle

Training data: 
QCD dijet

Loss function 
ℒ = f(ypred − ytrue)

ytrue
=

(rE ,rm )
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