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What the media sees

Data at CERN

What experimentalists see What theorists see

What grad students see What tourists see What generative models 
see



Generative Models

Either implicitly or  
explicitly learn  

(an approximation) to

(the probability density of 
simulation or data)



Why generative 
 models?

Sample 

to generate datapoints
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Why generative 
 models?

Showers in complex high-
resolution calorimeters

Sample 

to generate datapoints
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Motivation
This happens in the experiment

This is what we want to know

Simulation is crucial to connect 
experimental data with theory 

predictions
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Motivation
This happens in the experiment

This is what we want to know

Simulation is crucial to connect 
experimental data with theory 

predictions, but computationally 
very costly 

→Use generative models trained on 
simulation or data to augment 
simulations




Simulation target

• Shower in ILD Electromagnetic Calorimeter


• 30x30x30 cells (Si-W)


• Photon energies from 10 to 100 GeV


• Use 950k examples (uniform in energy) 
created with GEANT4 to train

ILD Detector



Simulation target

How to represent?


Tabular data:  
Easy, insufficient for high-dimensions




Simulation target

How to represent?


Tabular data


Fixed grid: Voxel image 
(allows using e.g. convolutional networks)




24.10.2022 S. Diefenbacher Generative Models for Fast (Calorimeter) Simulation 18

Bounded Information Bottleneck Autoencoder

•Combines VAE and GAN approaches

•Final Post Processor network for fine tuning
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Slava Voloshynovskiy et al.: 
Information bottleneck through 
variational glasses: 1912.00830


Bounded Information 
Bottleneck AE

BIB-AE (GAN + VAE)

Generative Architecture
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24.10.2022 S. Diefenbacher Generative Models for Fast (Calorimeter) Simulation 18

Bounded Information Bottleneck Autoencoder

•Combines VAE and GAN approaches

•Final Post Processor network for fine tuning

������� �������

	
����
��
�
�

����

��
�
�

	
����
�����

� ��

�
�	�

���

���

����
���������
�������

�
�

�

��������������

��

 

Slava Voloshynovskiy et al.: 
Information bottleneck through 
variational glasses: 1912.00830


24.10.2022 S. Diefenbacher Generative Models for Fast (Calorimeter) Simulation 2020

Cell Energy Spectrum
Photons Pions

BIB-AE (GAN + VAE): 
1st simulation of Photon 
shower in 27k cell 
calorimeter

24.10.2022 S. Diefenbacher Generative Models for Fast (Calorimeter) Simulation 16

Shower Dataset
Training data:

•Photons / charged Pions

•1 million / 500k showers 

•10 to 100 GeV

•Fixed incident point & angle

•Project to grid

•30×30×30 / 25×25×48

Photon shower 

Buhmann et. al. Hadrons, Better, Faster, 
Stronger: (2021) 2112.09709 

Charged pion shower

Buhmann et al.: Getting High: High Fidelity 
Simulation of High Granularity Calorimeters 
with High Speed (2020) 2005.05334 

Generative progress

Buhmann, .., GK et al 2005.05334

24.10.2022 S. Diefenbacher Generative Models for Fast (Calorimeter) Simulation 2020

Cell Energy Spectrum
Photons Pions

Progress



Generative progress

24.10.2022 S. Diefenbacher Generative Models for Fast (Calorimeter) Simulation 18

Bounded Information Bottleneck Autoencoder

•Combines VAE and GAN approaches

•Final Post Processor network for fine tuning

������� �������

	
����
��
�
�

����

��
�
�

	
����
�����

� ��

�
�	�

���

���

����
���������
�������

�
�

�

��������������

��

 

Slava Voloshynovskiy et al.: 
Information bottleneck through 
variational glasses: 1912.00830


Handle more complex 
pion showers in 
hadronic calorimeter

Buhmann, .., GK et al 2112.09709;

24.10.2022 S. Diefenbacher Generative Models for Fast (Calorimeter) Simulation 2020

Cell Energy Spectrum
Photons Pions
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Shower Dataset
Charged pion showers
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Stronger: (2021) 2112.09709 

Pion showers significantly more complex
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Generative progress

Extend to condition on 
angles

Diefenbacher, .., GK et al 2303.18150

24.10.2022 S. Diefenbacher Generative Models for Fast (Calorimeter) Simulation 2020

Cell Energy Spectrum
Photons Pions
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Shower Dataset
Charged pion showers

Buhmann et. al. Hadrons, Better, Faster, 
Stronger: (2021) 2112.09709 

Pion showers significantly more complex

Photon showers 

Buhmann et al.: Getting High: High Fidelity 
Simulation of High Granularity Calorimeters 
with High Speed (2020) 2005.05334 

Training data:

•Photons / charged Pions

•1 million / 500k showers 

•10 to 100 GeV

•Fixed incident point & angle

•Project to grid
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We use generative models as surrogates to 
speed-up calorimeter shower simulations.


We advance these models in three major directions:
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Figure 5: Left: Histogram of the cell energies. Right: Num-
ber of hits distributions for single energies at 10, 50, and
90 GeV. The bottom panel provides the ratio to GEANT4.
Figures taken from Ref. [39].

Finally, we distill this model into132

CALOCLOUDS II (CM), a consis-133

tency model (CM) [50] allowing for134

single shot generation without loss135

in fidelity. The diffusion model ar-136

chitecture uses weight sharing among137

all points, hence it samples all points138

independently and identically dis-139

tributed (i.i.d.) with respect to the140

global conditioning. Due to the141

computational efficiency of CALO-142

CLOUDS and the linear scaling of the143

computing cost with the point cloud144

size, the models can be applied to145

point clouds with a higher granularity146

than the actual physical sensors. This147

way, the models become largely cell148

geometry-independent, and showers149

can be projected into any part of the150

detector (except changing its depth)151

with minimal artifacts. We generated such a dataset with GEANT4 using photon showers with152

energies between 10 and 90 GeV. The dataset contains point clouds with up to 6,000 points per153

shower — noticeably higher than the number of cell hits (< 1, 500).154

Table 1: Comparison of the computational perfor-
mance of CALOCLOUDS, CALOCLOUDS II, and CALO-
CLOUDS II (CM) to the baseline GEANT4 simulator on
a single CPU core. The number of function evaluations
(NFE) indicate the number of diffusion model passes.
Table adapted from Ref. [39].

Simulator NFE Time / Shower [ms] Speed-up

GEANT4 3914.80 ± 74.09 ⇥1

CALOCLOUDS 100 3146.71 ± 31.66 ⇥1.2
CALOCLOUDS II 25 651.68 ± 4.21 ⇥6.0
CALOCLOUDS II (CM) 1 84.35 ± 0.22 ⇥46

We compare the generative fidelity of the155

CALOCLOUDS variants to GEANT4 with156

various cell-level and shower-level observ-157

ables after projecting the point cloud to the158

real ILD ECAL geometry with 30 layers159

each containing 30⇥30 cells. Fig. 5 shows160

the cell energy distribution for the full en-161

ergy spectrum and the number of hits (non-162

zero cells) for single energy showers. Over-163

all, both CALOCLOUDS II models improve164

upon CALOCLOUDS and reach a high fi-165

delity compared to GEANT4.166

In Tab. 1 we benchmark the speed-up of the167

CALOCLOUDS models over the GEANT4168

simulation. For a fair comparison the per-169

formance is compared on the same single CPU core, as GEANT4 does not support GPUs, and CPUs170

are cheaper and more widely available. Using consistency distllation, the CALOCLOUDS II (CM)171

model is able to generate photon showers 46⇥ faster than GEANT4. A comparison to the BIB-AE172

and L2LFLOWS models is not performed as the data structures are too different to allow for a fair173

compairson. More details on the CALOCLOUDS models can be found in Refs. [35, 39].174

5 Conclusion175

We have shown recent advances on three different frontiers in the generative modelling of calorimeter176

showers. Eventually we envision a model that combines all three: flexible conditional sampling,177

high fidelity, and computational efficiency. For the already established models, further fidelity and178

timing studies with common benchmark metrics datasets with the same dimensionalities should179

be performed. A valuable comparison is currently undertaken in form of the Fast Calorimeter180

Challenge [51]. Beyond photon showers, we plan to explore the generative modelling of hadronic181

showers, which are more challenging to model due to their more complex shower topology. For182

CALOCLOUDS this will likely necessitate a more complex model architecture taking inter-point183

correlations during sampling into account, e.g. by using linearly scalable EPiC layers [46] introduced184

for particle jet modelling. Finally, ongoing efforts are made to include the generative models as a185

drop-in replacement for parts the full GEANT4 simulation pipeline.186
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L2LF����, we show the absolute relative deviation to G����4 for both generative networks per
voxel:

L2LF����relative
8, 9 :=

���L2LF����overlay
8, 9 � G����4overlay

8, 9

���
G����4overlay

8, 9

, (4.1)

BIB-AErelative
8, 9 :=

���BIB-AEoverlay
8, 9 � G����4overlay

8, 9

���
G����4overlay

8, 9

, (4.2)

where 8 and 9 denote voxel positions. We observe that in general the generative models capture the
overlay quite well, with L2LF���� having smaller deviations from G����4 than the BIB-AE.

To compare the performance of the generative models in more detail, we start by looking at
the showers on the voxel level. Figure 5 shows the distributions of voxel energies as well as the
sparsity, i.e. the number of non-zero voxels per shower. One characteristic that repeats itself in
several histograms is that the BIB-AE is not capable of capturing the full G����4 distribution,
which can e.g. be seen in the sparsity plot. L2LF���� is much better in this regard. Further, the
energy deposited around the energy of a minimum ionizing particle (MIP) in the voxel distribution
is better modeled by L2LF���� in comparison to the BIB-AE, which slightly overshoots it. While
L2LF���� does not learn the G����4 distribution perfectly, it learns the distributions much better
than the BIB-AE.

For ⇢inc 2 {20, 80} GeV, Fig. 6 shows the energy profiles in G-, H- and I-direction. As can be
seen, the larger the incident energy ⇢inc, the more the maximum in the energy profiles shifts to later
layers, which both the BIB-AE and L2LF���� are able to learn. Deviations for both simulators
mainly exist in a few initial and final layers.

The distributions in Fig. 7 show the total energy depositions (⇢depos :=
Õ

8 ⇢8), both for
continuous incident energies uniformly distributed in [10, 100] GeV (left) and for discrete incident
energies ⇢inc 2 {20, 50, 80} GeV (right). In both of these distributions we observe that L2LF����
is much closer to the G����4 distribution than the BIB-AE.

Figure 8 shows the linearity5 (and its relative deviation to G����4) as well as the width (again
with its relative deviation).6 For the linearity, the relative deviation is for the BIB-AE maximally

5This does not correspond to the actual calorimeter linearity or resolution, as the increased thickness of the last 10
ECal layers is not calibrated for. It is, however, still a vital means for determining the performance of the generative
approaches.

6The linearity `90 is defined as the mean deposited energy over the ECal for discrete ⇢inc of a 90% subset of the
samples that have the smallest range. The width d90 is defined as d90 := `90/f90, where f90 is the standard deviation
of the 90% subset of the energy deposition samples that have the smallest range.

Figure 3: BIB-AE–generated shower (left), G����4 test shower (middle) and L2LF����-generated
shower (right). The black arrow indicates the (hypothetical) direction of an incoming particle.
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Figure 1: Architecture of the ������ ������������ ����.

3.2 ������ �����

Next, we turn to the second step of the generation process: generating shower shapes conditioned
on the total incident energy and the total deposited energies in each layer. Our overarching goal
here, as in the original CaloFlow, is to learn

?(I0, . . . ,I29 |⇢0, . . . , ⇢29, ⇢inc) (3.3)

where the ECal voxel energy depositions of layer 8 are denoted by I8 2 R100. Unlike in Sec. 3.1, no
cutoff is applied to the voxel energy depositions used in the ������ ����� training. This prevents
potential sharp edges in the voxel data, which would be caused by the cutoff, from interfering with
the training of the ������ �����. (For the ������ ������������ ����, this issue was already
circumvented, as each layer energy is the aggregate of multiple voxels, lessening any potential
edges.) The voxel energy depositions are preprocessed similarly to the layer energies used in the
������ ������������ ����. The precise nature of the preprocessing is outlined in App. B.

In the original CaloFlow, a single NF was trained on all the calorimeter voxels of every layer
together, to directly learn (3.3). Since the number of parameters of a single NF scales quadratically
with the dimensionality 3 of the samples, the single-NF approach of original CaloFlow applied to
the ILD dataset (which has 3 = 3000) would lead to a prohibitive number of parameters (> 1B).
One can attempt to reduce the number of parameters by decreasing the number of MADE blocks
as well as RQS bins, but this leads to a significantly reduced fidelity.

To reduce the number of parameters without sacrificing quality, our key idea here is to instead
train one NF per ECal layer. Since the evolution of a shower in layer 8 depends on what happened
in the previous layers, NF 8 has to be conditioned on the voxel energy depositions of the previous
layers. In other words, we endeavor to train 30 separate NFs to learn the distributions:

?8 (I8 |I0, . . . ,I8�1, ⇢0, . . . , ⇢29, ⇢inc), 8 = 0, . . . , 29 (3.4)

If each distribution ?8 could be learned perfectly, then they could be multiplied together to recon-
struct the full joint distribution (3.3). This would be in effect its own kind of autoregressive model.
However, in later layers, there are a lot of conditioning features, and we observed that attempting to
model the full conditional likelihood (3.4) resulted in suboptimal performance.
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Figure 2: Architecture of the ������ �����. As mentioned in the main text, NF 0 does not make
use of an embedding network for the conditioning. The postprocessing is explained in detail in
App. B.

NF 8 Context features Context shape
0 ⇢0, ⇢inc [# , 2]
1 I0, ⇢1, ⇢inc [# , 102]
2 I0, I1, ⇢2, ⇢inc [# , 202]
3 I0, I1, I2, ⇢3, ⇢inc [# , 302]
4 I0, I1, I2, I3, ⇢4, ⇢inc [# , 402]
� 5 I8�5, I8�4, I8�3, I8�2, I8�1, ⇢8 , ⇢inc [# , 502]

Table 1: For the conditioning on the previous 5 ECal layers, i.e. =cond = 5, this table shows the
context features each NF gets and their shape before being fed into an embedding network. Here,
# denotes the batch size used during training or sampling.

modified to operate on the photon showers with shape 30 ⇥ 10 ⇥ 10 by retraining it. The BIB-
AE consists of an encoder and a decoder pair, which is trained using a set of adversarial critics.
The BIB-AE generation process employs an additional post-processing step and a Kernel-Density-
Estimation–based latent sampling, as described in Ref. [18]. The BIB-AE model and PostProcessor
model have a combined total of 9.3M parameters, while the critics used to train them have an
additional 3.7M parameters.

4.1 Distributions

Figure 3 shows a single test shower of G����4 as well as a generated shower from the BIB-AE
and L2LF���� each. All single showers have an incident energy ⇢inc ⇡ 50 GeV. We see that the
individual shower from L2LF���� looks reasonable, with a broadly realistic morphology of voxels
and energy depositions.

Figure 4 shows the overlay of 95k showers, i.e. the mean of the voxel energies of 95k showers.
In order to create two-dimensional plots, the voxel energies are summed over the I-, G- or H-axis.
For G����4, the 95k test showers are used. To highlight potential differences for the BIB-AE and
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all points, hence it samples all points138

independently and identically dis-139

tributed (i.i.d.) with respect to the140

global conditioning. Due to the141

computational efficiency of CALO-142

CLOUDS and the linear scaling of the143

computing cost with the point cloud144

size, the models can be applied to145

point clouds with a higher granularity146

than the actual physical sensors. This147

way, the models become largely cell148

geometry-independent, and showers149

can be projected into any part of the150

detector (except changing its depth)151

with minimal artifacts. We generated such a dataset with GEANT4 using photon showers with152

energies between 10 and 90 GeV. The dataset contains point clouds with up to 6,000 points per153

shower — noticeably higher than the number of cell hits (< 1, 500).154

Table 1: Comparison of the computational perfor-
mance of CALOCLOUDS, CALOCLOUDS II, and CALO-
CLOUDS II (CM) to the baseline GEANT4 simulator on
a single CPU core. The number of function evaluations
(NFE) indicate the number of diffusion model passes.
Table adapted from Ref. [39].

Simulator NFE Time / Shower [ms] Speed-up

GEANT4 3914.80 ± 74.09 ⇥1

CALOCLOUDS 100 3146.71 ± 31.66 ⇥1.2
CALOCLOUDS II 25 651.68 ± 4.21 ⇥6.0
CALOCLOUDS II (CM) 1 84.35 ± 0.22 ⇥46

We compare the generative fidelity of the155

CALOCLOUDS variants to GEANT4 with156

various cell-level and shower-level observ-157

ables after projecting the point cloud to the158
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each containing 30⇥30 cells. Fig. 5 shows160
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ergy spectrum and the number of hits (non-162

zero cells) for single energy showers. Over-163

all, both CALOCLOUDS II models improve164

upon CALOCLOUDS and reach a high fi-165

delity compared to GEANT4.166

In Tab. 1 we benchmark the speed-up of the167

CALOCLOUDS models over the GEANT4168

simulation. For a fair comparison the per-169

formance is compared on the same single CPU core, as GEANT4 does not support GPUs, and CPUs170

are cheaper and more widely available. Using consistency distllation, the CALOCLOUDS II (CM)171

model is able to generate photon showers 46⇥ faster than GEANT4. A comparison to the BIB-AE172

and L2LFLOWS models is not performed as the data structures are too different to allow for a fair173

compairson. More details on the CALOCLOUDS models can be found in Refs. [35, 39].174
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We have shown recent advances on three different frontiers in the generative modelling of calorimeter176

showers. Eventually we envision a model that combines all three: flexible conditional sampling,177

high fidelity, and computational efficiency. For the already established models, further fidelity and178

timing studies with common benchmark metrics datasets with the same dimensionalities should179

be performed. A valuable comparison is currently undertaken in form of the Fast Calorimeter180

Challenge [51]. Beyond photon showers, we plan to explore the generative modelling of hadronic181

showers, which are more challenging to model due to their more complex shower topology. For182

CALOCLOUDS this will likely necessitate a more complex model architecture taking inter-point183

correlations during sampling into account, e.g. by using linearly scalable EPiC layers [46] introduced184

for particle jet modelling. Finally, ongoing efforts are made to include the generative models as a185

drop-in replacement for parts the full GEANT4 simulation pipeline.186
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Figure 4: Overlay of 95k showers for all simulators for the full spectrum, where the voxel energies
are summed along the I- (top), G- (middle) and H-axis (bottom). In all plots, the mean over the
number of showers is taken. For G����4, the shown colormap is the energy scale, whereas for
the BIB-AE and L2LF����, the colormap (both generative networks make use of the same one)
corresponds to the relative deviations to G����4, defined in Eqs. 4.1 and 4.2.

about 1%, for L2LF���� the deviation is everywhere below 0.75%. For the width plot,7 the relative

7One might be tempted to call d90 the “resolution”, but because of the different thicknesses of the tungsten absorber
layers, cf. Sec. 2, this is not the case [12].
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Efficient training is therefore possible by optimizing random terms of L with stochastic gradient
descent. Further improvements come from variance reduction by rewriting L (3) as:

Eq


DKL(q(xT |x0) k p(xT ))| {z }

LT

+
X

t>1

DKL(q(xt�1|xt,x0) k p✓(xt�1|xt))| {z }
Lt�1

� log p✓(x0|x1)| {z }
L0

�
(5)

(See Appendix A for details. The labels on the terms are used in Section 3.) Equation (5) uses KL
divergence to directly compare p✓(xt�1|xt) against forward process posteriors, which are tractable
when conditioned on x0:

q(xt�1|xt,x0) = N (xt�1; µ̃t(xt,x0), �̃tI), (6)

where µ̃t(xt,x0) :=

p
↵̄t�1�t

1 � ↵̄t
x0 +

p
↵t(1 � ↵̄t�1)

1 � ↵̄t
xt and �̃t :=

1 � ↵̄t�1

1 � ↵̄t
�t (7)

Consequently, all KL divergences in Eq. (5) are comparisons between Gaussians, so they can be
calculated in a Rao-Blackwellized fashion with closed form expressions instead of high variance
Monte Carlo estimates.

3 Diffusion models and denoising autoencoders

Diffusion models might appear to be a restricted class of latent variable models, but they allow a
large number of degrees of freedom in implementation. One must choose the variances �t of the
forward process and the model architecture and Gaussian distribution parameterization of the reverse
process. To guide our choices, we establish a new explicit connection between diffusion models
and denoising score matching (Section 3.2) that leads to a simplified, weighted variational bound
objective for diffusion models (Section 3.4). Ultimately, our model design is justified by simplicity
and empirical results (Section 4). Our discussion is categorized by the terms of Eq. (5).

3.1 Forward process and LT

We ignore the fact that the forward process variances �t are learnable by reparameterization and
instead fix them to constants (see Section 4 for details). Thus, in our implementation, the approximate
posterior q has no learnable parameters, so LT is a constant during training and can be ignored.

3.2 Reverse process and L1:T�1

Now we discuss our choices in p✓(xt�1|xt) = N (xt�1;µ✓(xt, t),⌃✓(xt, t)) for 1 < t  T . First,
we set ⌃✓(xt, t) = �

2
t I to untrained time dependent constants. Experimentally, both �

2
t = �t and

�
2
t = �̃t = 1�↵̄t�1

1�↵̄t
�t had similar results. The first choice is optimal for x0 ⇠ N (0, I), and the

second is optimal for x0 deterministically set to one point. These are the two extreme choices
corresponding to upper and lower bounds on reverse process entropy for data with coordinatewise
unit variance [53].

Second, to represent the mean µ✓(xt, t), we propose a specific parameterization motivated by the
following analysis of Lt. With p✓(xt�1|xt) = N (xt�1;µ✓(xt, t), �2

t I), we can write:

Lt�1 = Eq


1

2�
2
t

kµ̃t(xt,x0) � µ✓(xt, t)k2

�
+ C (8)

where C is a constant that does not depend on ✓. So, we see that the most straightforward parameteri-
zation of µ✓ is a model that predicts µ̃t, the forward process posterior mean. However, we can expand
Eq. (8) further by reparameterizing Eq. (4) as xt(x0, ✏) =

p
↵̄tx0 +

p
1 � ↵̄t✏ for ✏ ⇠ N (0, I) and

applying the forward process posterior formula (7):

Lt�1 � C = Ex0,✏

"
1

2�
2
t

����µ̃t

✓
xt(x0, ✏),

1p
↵̄t

(xt(x0, ✏) �
p

1 � ↵̄t✏)

◆
� µ✓(xt(x0, ✏), t)

����
2
#

(9)

= Ex0,✏

"
1

2�
2
t

����
1

p
↵t

✓
xt(x0, ✏) � �tp

1 � ↵̄t
✏

◆
� µ✓(xt(x0, ✏), t)

����
2
#

(10)

3

Will try to predict

��<latexit sha1_base64="7yFrn0YPyuP5dVIvc7Tl2zcbS/g=">AAAB+HicbVBNSwMxEJ2tX7V+dNWjl2ARPJXdKuix6MVjBfsB7VKyaXYbmk2WJKvU0l/ixYMiXv0p3vw3pu0etPXBwOO9GWbmhSln2njet1NYW9/Y3Cpul3Z29/bL7sFhS8tMEdokkkvVCbGmnAnaNMxw2kkVxUnIaTsc3cz89gNVmklxb8YpDRIcCxYxgo2V+m65x6WIFYuHBislH/tuxat6c6BV4uekAjkafferN5AkS6gwhGOtu76XmmCClWGE02mpl2maYjLCMe1aKnBCdTCZHz5Fp1YZoEgqW8Kgufp7YoITrcdJaDsTbIZ62ZuJ/3ndzERXwYSJNDNUkMWiKOPISDRLAQ2YosTwsSWYKGZvRWSIFSbGZlWyIfjLL6+SVq3qn1drdxeV+nUeRxGO4QTOwIdLqMMtNKAJBDJ4hld4c56cF+fd+Vi0Fpx85gj+wPn8AXOGk5o=</latexit>

xT �� · · · �� xt ������ xt�1 �� · · · �� x0
<latexit sha1_base64="l4LvSgM7PR7I/kkuy5soikK4gpU="></latexit>

p✓(xt�1|xt)
<latexit sha1_base64="XVzP503G8Ma8Lkwk3KKGZcZJbZ0=">AAACEnicbVC7SgNBFJ2Nrxhfq5Y2g0FICsNuFEwZsLGMYB6QLMvsZDYZMvtg5q4Y1nyDjb9iY6GIrZWdf+Mk2SImHrhwOOde7r3HiwVXYFk/Rm5tfWNzK79d2Nnd2z8wD49aKkokZU0aiUh2PKKY4CFrAgfBOrFkJPAEa3uj66nfvmdS8Si8g3HMnIAMQu5zSkBLrlmO3R4MGZBSLyAw9Pz0YeKmcG5P8CNekKDsmkWrYs2AV4mdkSLK0HDN714/oknAQqCCKNW1rRiclEjgVLBJoZcoFhM6IgPW1TQkAVNOOntpgs+00sd+JHWFgGfq4kRKAqXGgac7p0eqZW8q/ud1E/BrTsrDOAEW0vkiPxEYIjzNB/e5ZBTEWBNCJde3YjokklDQKRZ0CPbyy6ukVa3YF5Xq7WWxXsviyKMTdIpKyEZXqI5uUAM1EUVP6AW9oXfj2Xg1PozPeWvOyGaO0R8YX7+bCp4F</latexit>

q(xt|xt�1)
<latexit sha1_base64="eAZ87UuTmAQoJ4u19RGH5tA+bCI=">AAACC3icbVC7TgJBFJ31ifhatbSZQEywkOyiiZQkNpaYyCMBspkdZmHC7MOZu0ay0tv4KzYWGmPrD9j5N87CFgieZJIz59ybe+9xI8EVWNaPsbK6tr6xmdvKb+/s7u2bB4dNFcaSsgYNRSjbLlFM8IA1gINg7Ugy4ruCtdzRVeq37plUPAxuYRyxnk8GAfc4JaAlxyzclbo+gaHrJQ8TB/AjnvsmcGZPTh2zaJWtKfAysTNSRBnqjvnd7Yc09lkAVBClOrYVQS8hEjgVbJLvxopFhI7IgHU0DYjPVC+Z3jLBJ1rpYy+U+gWAp+p8R0J8pca+qyvTRdWil4r/eZ0YvGov4UEUAwvobJAXCwwhToPBfS4ZBTHWhFDJ9a6YDokkFHR8eR2CvXjyMmlWyvZ5uXJzUaxVszhy6BgVUAnZ6BLV0DWqowai6Am9oDf0bjwbr8aH8TkrXTGyniP0B8bXL+1hmu8=</latexit>

Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)

2
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1
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Training is performed by optimizing the usual variational bound on negative log likelihood:
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The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=
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Table 1: CIFAR10 results. NLL measured in bits/dim.
Model IS FID NLL Test (Train)

Conditional

EBM [11] 8.30 37.9
JEM [17] 8.76 38.4
BigGAN [3] 9.22 14.73
StyleGAN2 + ADA (v1) [29] 10.06 2.67

Unconditional

Diffusion (original) [53]  5.40
Gated PixelCNN [59] 4.60 65.93 3.03 (2.90)
Sparse Transformer [7] 2.80
PixelIQN [43] 5.29 49.46
EBM [11] 6.78 38.2
NCSNv2 [56] 31.75
NCSN [55] 8.87±0.12 25.32
SNGAN [39] 8.22±0.05 21.7
SNGAN-DDLS [4] 9.09±0.10 15.42
StyleGAN2 + ADA (v1) [29] 9.74 ± 0.05 3.26
Ours (L, fixed isotropic ⌃) 7.67±0.13 13.51  3.70 (3.69)
Ours (Lsimple) 9.46±0.11 3.17  3.75 (3.72)

Table 2: Unconditional CIFAR10 reverse
process parameterization and training objec-
tive ablation. Blank entries were unstable to
train and generated poor samples with out-of-
range scores.

Objective IS FID

µ̃ prediction (baseline)

L, learned diagonal ⌃ 7.28±0.10 23.69
L, fixed isotropic ⌃ 8.06±0.09 13.22
kµ̃ � µ̃✓k2 – –

✏ prediction (ours)

L, learned diagonal ⌃ – –
L, fixed isotropic ⌃ 7.67±0.13 13.51
k✏̃ � ✏✓k2 (Lsimple) 9.46±0.11 3.17

training. However, we found it beneficial to sample quality (and simpler to implement) to train on the
following variant of the variational bound:

Lsimple(✓) := Et,x0,✏

h��✏ � ✏✓(
p

↵̄tx0 +
p

1 � ↵̄t✏, t)
��2

i
(14)

where t is uniform between 1 and T . The t = 1 case corresponds to L0 with the integral in the
discrete decoder definition (13) approximated by the Gaussian probability density function times the
bin width, ignoring �

2
1 and edge effects. The t > 1 cases correspond to an unweighted version of

Eq. (12), analogous to the loss weighting used by the NCSN denoising score matching model [55].
(LT does not appear because the forward process variances �t are fixed.) Algorithm 1 displays the
complete training procedure with this simplified objective.

Since our simplified objective (14) discards the weighting in Eq. (12), it is a weighted variational
bound that emphasizes different aspects of reconstruction compared to the standard variational
bound [18, 22]. In particular, our diffusion process setup in Section 4 causes the simplified objective
to down-weight loss terms corresponding to small t. These terms train the network to denoise data
with very small amounts of noise, so it is beneficial to down-weight them so that the network can
focus on more difficult denoising tasks at larger t terms. We will see in our experiments that this
reweighting leads to better sample quality.

4 Experiments

We set T = 1000 for all experiments so that the number of neural network evaluations needed
during sampling matches previous work [53, 55]. We set the forward process variances to constants
increasing linearly from �1 = 10�4 to �T = 0.02. These constants were chosen to be small
relative to data scaled to [�1, 1], ensuring that reverse and forward processes have approximately
the same functional form while keeping the signal-to-noise ratio at xT as small as possible (LT =
DKL(q(xT |x0) k N (0, I)) ⇡ 10�5 bits per dimension in our experiments).

To represent the reverse process, we use a U-Net backbone similar to an unmasked PixelCNN++ [52,
48] with group normalization throughout [66]. Parameters are shared across time, which is specified
to the network using the Transformer sinusoidal position embedding [60]. We use self-attention at
the 16 ⇥ 16 feature map resolution [63, 60]. Details are in Appendix B.

4.1 Sample quality

Table 1 shows Inception scores, FID scores, and negative log likelihoods (lossless codelengths) on
CIFAR10. With our FID score of 3.17, our unconditional model achieves better sample quality than
most models in the literature, including class conditional models. Our FID score is computed with
respect to the training set, as is standard practice; when we compute it with respect to the test set, the
score is 5.24, which is still better than many of the training set FID scores in the literature.
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Efficient training is therefore possible by optimizing random terms of L with stochastic gradient
descent. Further improvements come from variance reduction by rewriting L (3) as:

Eq


DKL(q(xT |x0) k p(xT ))| {z }

LT

+
X

t>1

DKL(q(xt�1|xt,x0) k p✓(xt�1|xt))| {z }
Lt�1

� log p✓(x0|x1)| {z }
L0

�
(5)

(See Appendix A for details. The labels on the terms are used in Section 3.) Equation (5) uses KL
divergence to directly compare p✓(xt�1|xt) against forward process posteriors, which are tractable
when conditioned on x0:

q(xt�1|xt,x0) = N (xt�1; µ̃t(xt,x0), �̃tI), (6)

where µ̃t(xt,x0) :=

p
↵̄t�1�t

1 � ↵̄t
x0 +

p
↵t(1 � ↵̄t�1)

1 � ↵̄t
xt and �̃t :=

1 � ↵̄t�1

1 � ↵̄t
�t (7)

Consequently, all KL divergences in Eq. (5) are comparisons between Gaussians, so they can be
calculated in a Rao-Blackwellized fashion with closed form expressions instead of high variance
Monte Carlo estimates.

3 Diffusion models and denoising autoencoders

Diffusion models might appear to be a restricted class of latent variable models, but they allow a
large number of degrees of freedom in implementation. One must choose the variances �t of the
forward process and the model architecture and Gaussian distribution parameterization of the reverse
process. To guide our choices, we establish a new explicit connection between diffusion models
and denoising score matching (Section 3.2) that leads to a simplified, weighted variational bound
objective for diffusion models (Section 3.4). Ultimately, our model design is justified by simplicity
and empirical results (Section 4). Our discussion is categorized by the terms of Eq. (5).

3.1 Forward process and LT

We ignore the fact that the forward process variances �t are learnable by reparameterization and
instead fix them to constants (see Section 4 for details). Thus, in our implementation, the approximate
posterior q has no learnable parameters, so LT is a constant during training and can be ignored.

3.2 Reverse process and L1:T�1

Now we discuss our choices in p✓(xt�1|xt) = N (xt�1;µ✓(xt, t),⌃✓(xt, t)) for 1 < t  T . First,
we set ⌃✓(xt, t) = �

2
t I to untrained time dependent constants. Experimentally, both �

2
t = �t and

�
2
t = �̃t = 1�↵̄t�1

1�↵̄t
�t had similar results. The first choice is optimal for x0 ⇠ N (0, I), and the

second is optimal for x0 deterministically set to one point. These are the two extreme choices
corresponding to upper and lower bounds on reverse process entropy for data with coordinatewise
unit variance [53].

Second, to represent the mean µ✓(xt, t), we propose a specific parameterization motivated by the
following analysis of Lt. With p✓(xt�1|xt) = N (xt�1;µ✓(xt, t), �2

t I), we can write:

Lt�1 = Eq


1

2�
2
t

kµ̃t(xt,x0) � µ✓(xt, t)k2

�
+ C (8)

where C is a constant that does not depend on ✓. So, we see that the most straightforward parameteri-
zation of µ✓ is a model that predicts µ̃t, the forward process posterior mean. However, we can expand
Eq. (8) further by reparameterizing Eq. (4) as xt(x0, ✏) =

p
↵̄tx0 +

p
1 � ↵̄t✏ for ✏ ⇠ N (0, I) and

applying the forward process posterior formula (7):

Lt�1 � C = Ex0,✏

"
1

2�
2
t

����µ̃t

✓
xt(x0, ✏),

1p
↵̄t

(xt(x0, ✏) �
p

1 � ↵̄t✏)

◆
� µ✓(xt(x0, ✏), t)

����
2
#

(9)

= Ex0,✏

"
1

2�
2
t

����
1

p
↵t

✓
xt(x0, ✏) � �tp

1 � ↵̄t
✏

◆
� µ✓(xt(x0, ✏), t)

����
2
#

(10)
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)

2
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)

2

Algorithm 1 Training
1: repeat
2: x0 ⇠ q(x0)
3: t ⇠ Uniform({1, . . . , T})
4: ✏ ⇠ N (0, I)
5: Take gradient descent step on

r✓

��✏� ✏✓(
p
↵̄tx0 +

p
1� ↵̄t✏, t)

��2

6: until converged

Algorithm 2 Sampling

1: xT ⇠ N (0, I)
2: for t = T, . . . , 1 do
3: z ⇠ N (0, I) if t > 1, else z = 0

4: xt�1 = 1p
↵t

⇣
xt � 1�↵tp

1�↵̄t
✏✓(xt, t)

⌘
+ �tz

5: end for
6: return x0

Equation (10) reveals that µ✓ must predict 1p
↵t

⇣
xt � �tp

1�↵̄t
✏
⌘

given xt. Since xt is available as
input to the model, we may choose the parameterization

µ✓(xt, t) = µ̃t

✓
xt,

1p
↵̄t

(xt �
p

1 � ↵̄t✏✓(xt))

◆
=

1
p

↵t

✓
xt � �tp

1 � ↵̄t
✏✓(xt, t)

◆
(11)

where ✏✓ is a function approximator intended to predict ✏ from xt. To sample xt�1 ⇠ p✓(xt�1|xt) is
to compute xt�1 = 1p

↵t

⇣
xt � �tp

1�↵̄t
✏✓(xt, t)

⌘
+�tz, where z ⇠ N (0, I). The complete sampling

procedure, Algorithm 2, resembles Langevin dynamics with ✏✓ as a learned gradient of the data
density. Furthermore, with the parameterization (11), Eq. (10) simplifies to:

Ex0,✏


�

2
t

2�
2
t ↵t(1 � ↵̄t)

��✏ � ✏✓(
p

↵̄tx0 +
p

1 � ↵̄t✏, t)
��2

�
(12)

which resembles denoising score matching over multiple noise scales indexed by t [55]. As Eq. (12)
is equal to (one term of) the variational bound for the Langevin-like reverse process (11), we see
that optimizing an objective resembling denoising score matching is equivalent to using variational
inference to fit the finite-time marginal of a sampling chain resembling Langevin dynamics.

To summarize, we can train the reverse process mean function approximator µ✓ to predict µ̃t, or by
modifying its parameterization, we can train it to predict ✏. (There is also the possibility of predicting
x0, but we found this to lead to worse sample quality early in our experiments.) We have shown that
the ✏-prediction parameterization both resembles Langevin dynamics and simplifies the diffusion
model’s variational bound to an objective that resembles denoising score matching. Nonetheless,
it is just another parameterization of p✓(xt�1|xt), so we verify its effectiveness in Section 4 in an
ablation where we compare predicting ✏ against predicting µ̃t.

3.3 Data scaling, reverse process decoder, and L0

We assume that image data consists of integers in {0, 1, . . . , 255} scaled linearly to [�1, 1]. This
ensures that the neural network reverse process operates on consistently scaled inputs starting from
the standard normal prior p(xT ). To obtain discrete log likelihoods, we set the last term of the reverse
process to an independent discrete decoder derived from the Gaussian N (x0;µ✓(x1, 1), �2

1I):

p✓(x0|x1) =
DY

i=1

Z �+(xi
0)

��(xi
0)

N (x; µi
✓(x1, 1), �2

1) dx

�+(x) =

⇢
1 if x = 1
x + 1

255 if x < 1
��(x) =

⇢
�1 if x = �1
x � 1

255 if x > �1

(13)

where D is the data dimensionality and the i superscript indicates extraction of one coordinate.
(It would be straightforward to instead incorporate a more powerful decoder like a conditional
autoregressive model, but we leave that to future work.) Similar to the discretized continuous
distributions used in VAE decoders and autoregressive models [34, 52], our choice here ensures that
the variational bound is a lossless codelength of discrete data, without need of adding noise to the
data or incorporating the Jacobian of the scaling operation into the log likelihood. At the end of
sampling, we display µ✓(x1, 1) noiselessly.

3.4 Simplified training objective

With the reverse process and decoder defined above, the variational bound, consisting of terms derived
from Eqs. (12) and (13), is clearly differentiable with respect to ✓ and is ready to be employed for
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We advance these models in three major directions:
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Figure 5: Left: Histogram of the cell energies. Right: Num-
ber of hits distributions for single energies at 10, 50, and
90 GeV. The bottom panel provides the ratio to GEANT4.
Figures taken from Ref. [39].

Finally, we distill this model into132

CALOCLOUDS II (CM), a consis-133

tency model (CM) [50] allowing for134

single shot generation without loss135

in fidelity. The diffusion model ar-136

chitecture uses weight sharing among137

all points, hence it samples all points138

independently and identically dis-139

tributed (i.i.d.) with respect to the140

global conditioning. Due to the141

computational efficiency of CALO-142

CLOUDS and the linear scaling of the143

computing cost with the point cloud144

size, the models can be applied to145

point clouds with a higher granularity146

than the actual physical sensors. This147

way, the models become largely cell148

geometry-independent, and showers149

can be projected into any part of the150

detector (except changing its depth)151

with minimal artifacts. We generated such a dataset with GEANT4 using photon showers with152

energies between 10 and 90 GeV. The dataset contains point clouds with up to 6,000 points per153

shower — noticeably higher than the number of cell hits (< 1, 500).154

Table 1: Comparison of the computational perfor-
mance of CALOCLOUDS, CALOCLOUDS II, and CALO-
CLOUDS II (CM) to the baseline GEANT4 simulator on
a single CPU core. The number of function evaluations
(NFE) indicate the number of diffusion model passes.
Table adapted from Ref. [39].

Simulator NFE Time / Shower [ms] Speed-up

GEANT4 3914.80 ± 74.09 ⇥1

CALOCLOUDS 100 3146.71 ± 31.66 ⇥1.2
CALOCLOUDS II 25 651.68 ± 4.21 ⇥6.0
CALOCLOUDS II (CM) 1 84.35 ± 0.22 ⇥46

We compare the generative fidelity of the155

CALOCLOUDS variants to GEANT4 with156

various cell-level and shower-level observ-157

ables after projecting the point cloud to the158

real ILD ECAL geometry with 30 layers159

each containing 30⇥30 cells. Fig. 5 shows160

the cell energy distribution for the full en-161

ergy spectrum and the number of hits (non-162

zero cells) for single energy showers. Over-163

all, both CALOCLOUDS II models improve164

upon CALOCLOUDS and reach a high fi-165

delity compared to GEANT4.166

In Tab. 1 we benchmark the speed-up of the167

CALOCLOUDS models over the GEANT4168

simulation. For a fair comparison the per-169

formance is compared on the same single CPU core, as GEANT4 does not support GPUs, and CPUs170

are cheaper and more widely available. Using consistency distllation, the CALOCLOUDS II (CM)171

model is able to generate photon showers 46⇥ faster than GEANT4. A comparison to the BIB-AE172

and L2LFLOWS models is not performed as the data structures are too different to allow for a fair173

compairson. More details on the CALOCLOUDS models can be found in Refs. [35, 39].174

5 Conclusion175

We have shown recent advances on three different frontiers in the generative modelling of calorimeter176

showers. Eventually we envision a model that combines all three: flexible conditional sampling,177

high fidelity, and computational efficiency. For the already established models, further fidelity and178

timing studies with common benchmark metrics datasets with the same dimensionalities should179

be performed. A valuable comparison is currently undertaken in form of the Fast Calorimeter180

Challenge [51]. Beyond photon showers, we plan to explore the generative modelling of hadronic181

showers, which are more challenging to model due to their more complex shower topology. For182

CALOCLOUDS this will likely necessitate a more complex model architecture taking inter-point183

correlations during sampling into account, e.g. by using linearly scalable EPiC layers [46] introduced184

for particle jet modelling. Finally, ongoing efforts are made to include the generative models as a185

drop-in replacement for parts the full GEANT4 simulation pipeline.186
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Figure 4: Overlay of 95k showers for all simulators for the full spectrum, where the voxel energies
are summed along the I- (top), G- (middle) and H-axis (bottom). In all plots, the mean over the
number of showers is taken. For G����4, the shown colormap is the energy scale, whereas for
the BIB-AE and L2LF����, the colormap (both generative networks make use of the same one)
corresponds to the relative deviations to G����4, defined in Eqs. 4.1 and 4.2.

about 1%, for L2LF���� the deviation is everywhere below 0.75%. For the width plot,7 the relative

7One might be tempted to call d90 the “resolution”, but because of the different thicknesses of the tungsten absorber
layers, cf. Sec. 2, this is not the case [12].
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Figure 4: Illustration of the reverse di↵usion process. Starting from the initial

noise. The color scale corresponds to the point energy.

on additional quantities beyond multiplicity N and shower energy E.

In principle, one could add additional physically relevant quantities such as

the total visible energy, the center of gravity, or the shower start as explicit

conditioning features. However, such a choice of observables might bias the

generated showers. Instead, we opt for learning an additional global context vector

z to capture any other relevant distributions via an additional encoder.

This encoding is learned by an Equivariant Point Cloud (EPiC) Encoder

using three EPiC layers introduced in Ref. [27] with a hidden dimensionality of

128. The EPiC Encoder is conditioned on E and N and learns to encode the

original Geant4 point cloud into two latent space vectors µ and �. Similar to

the encoder in a VAE, µ and � are regularised towards a Gaussian distribution

with the Kullback-Leibler divergence (KLD) loss and the latent space z is sampled

with the reparametrization trick [44]. The KLD loss is given by:

LKLD = DKL(Z||N (0, 1)) = �
1

2

�
1 + log(�2) � µ2

� �2
�
, (6)

with the latent variables sampled via z ⇠ Z = N (µ,�2). We set the size of z to

256, the default in Ref. [32].
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Figure 4.3: The basic idea of diffusion models, where data is progressively perturbed with noise
and then reversed. The process of adding noise can be described by a stochastic differential
equation (SDE). To reverse the SDE and generate samples, the score function is needed. Figure
taken from Ref. [73].

where wt is a standard Wiener process and f(t) and g(t) are drift and diffusion coefficients,
respectively. By reversing this process, points drawn from the prior can be transformed into
samples that follow the data distribution. This reverse process is also described by a stochastic
differential equation:

dxt =
[
f(t)xt − g(t)2st(x)

]
dt+ g(t)dwt , (4.11)

where wt is a Wiener process with time reversed. The function st(x) is called the score func-
tion [182] and is defined as

st(x) = ∇x log pt(x) . (4.12)

This SDE can be solved with any standard SDE solver when the score function is known. An
alternative deterministic way of solving the reverse SDE was introduced in Ref. [73]. The au-
thors showed that for all diffusion processes, there exists a deterministic differential equation of
the form

dxt =

[
f(t)xt −

1

2
g(t)2st(xt)

]
dt . (4.13)

This ordinary differential equation is referred to as the probability flow ODE and can be solved
with any standard ODE solver.

In order to solve the differential equations Eq. 4.11 or Eq. 4.13, the score function is needed.
For diffusion models, an approximation of this score function can be learned with a neural net-
work. This formulation of diffusion models is referred to as score-based diffusion models [183,
184] and this approximation of the score function is strongly related to the training behaviour
of continuous normalizing flows. Therefore, a framework that describes both models will be

61
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Table 1: CIFAR10 results. NLL measured in bits/dim.
Model IS FID NLL Test (Train)

Conditional

EBM [11] 8.30 37.9
JEM [17] 8.76 38.4
BigGAN [3] 9.22 14.73
StyleGAN2 + ADA (v1) [29] 10.06 2.67

Unconditional

Diffusion (original) [53]  5.40
Gated PixelCNN [59] 4.60 65.93 3.03 (2.90)
Sparse Transformer [7] 2.80
PixelIQN [43] 5.29 49.46
EBM [11] 6.78 38.2
NCSNv2 [56] 31.75
NCSN [55] 8.87±0.12 25.32
SNGAN [39] 8.22±0.05 21.7
SNGAN-DDLS [4] 9.09±0.10 15.42
StyleGAN2 + ADA (v1) [29] 9.74 ± 0.05 3.26
Ours (L, fixed isotropic ⌃) 7.67±0.13 13.51  3.70 (3.69)
Ours (Lsimple) 9.46±0.11 3.17  3.75 (3.72)

Table 2: Unconditional CIFAR10 reverse
process parameterization and training objec-
tive ablation. Blank entries were unstable to
train and generated poor samples with out-of-
range scores.

Objective IS FID

µ̃ prediction (baseline)

L, learned diagonal ⌃ 7.28±0.10 23.69
L, fixed isotropic ⌃ 8.06±0.09 13.22
kµ̃ � µ̃✓k2 – –

✏ prediction (ours)

L, learned diagonal ⌃ – –
L, fixed isotropic ⌃ 7.67±0.13 13.51
k✏̃ � ✏✓k2 (Lsimple) 9.46±0.11 3.17

training. However, we found it beneficial to sample quality (and simpler to implement) to train on the
following variant of the variational bound:

Lsimple(✓) := Et,x0,✏

h��✏ � ✏✓(
p

↵̄tx0 +
p

1 � ↵̄t✏, t)
��2

i
(14)

where t is uniform between 1 and T . The t = 1 case corresponds to L0 with the integral in the
discrete decoder definition (13) approximated by the Gaussian probability density function times the
bin width, ignoring �

2
1 and edge effects. The t > 1 cases correspond to an unweighted version of

Eq. (12), analogous to the loss weighting used by the NCSN denoising score matching model [55].
(LT does not appear because the forward process variances �t are fixed.) Algorithm 1 displays the
complete training procedure with this simplified objective.

Since our simplified objective (14) discards the weighting in Eq. (12), it is a weighted variational
bound that emphasizes different aspects of reconstruction compared to the standard variational
bound [18, 22]. In particular, our diffusion process setup in Section 4 causes the simplified objective
to down-weight loss terms corresponding to small t. These terms train the network to denoise data
with very small amounts of noise, so it is beneficial to down-weight them so that the network can
focus on more difficult denoising tasks at larger t terms. We will see in our experiments that this
reweighting leads to better sample quality.

4 Experiments

We set T = 1000 for all experiments so that the number of neural network evaluations needed
during sampling matches previous work [53, 55]. We set the forward process variances to constants
increasing linearly from �1 = 10�4 to �T = 0.02. These constants were chosen to be small
relative to data scaled to [�1, 1], ensuring that reverse and forward processes have approximately
the same functional form while keeping the signal-to-noise ratio at xT as small as possible (LT =
DKL(q(xT |x0) k N (0, I)) ⇡ 10�5 bits per dimension in our experiments).

To represent the reverse process, we use a U-Net backbone similar to an unmasked PixelCNN++ [52,
48] with group normalization throughout [66]. Parameters are shared across time, which is specified
to the network using the Transformer sinusoidal position embedding [60]. We use self-attention at
the 16 ⇥ 16 feature map resolution [63, 60]. Details are in Appendix B.

4.1 Sample quality

Table 1 shows Inception scores, FID scores, and negative log likelihoods (lossless codelengths) on
CIFAR10. With our FID score of 3.17, our unconditional model achieves better sample quality than
most models in the literature, including class conditional models. Our FID score is computed with
respect to the training set, as is standard practice; when we compute it with respect to the test set, the
score is 5.24, which is still better than many of the training set FID scores in the literature.
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Figure 2: Overview of score-based generative modeling through SDEs. We can map data to a
noise distribution (the prior) with an SDE (Section 3.1), and reverse this SDE for generative modeling
(Section 3.2). We can also reverse the associated probability flow ODE (Section 4.3), which yields a
deterministic process that samples from the same distribution as the SDE. Both the reverse-time SDE
and probability flow ODE can be obtained by estimating the score rx log ptpxq (Section 3.3).

where w is the standard Wiener process (a.k.a., Brownian motion), fp¨, tq : Rd Ñ Rd is a vector-
valued function called the drift coefficient of xptq, and gp¨q : R Ñ R is a scalar function known as
the diffusion coefficient of xptq. For ease of presentation we assume the diffusion coefficient is a
scalar (instead of a dˆ d matrix) and does not depend on x, but our theory can be generalized to hold
in those cases (see Appendix A). The SDE has a unique strong solution as long as the coefficients
are globally Lipschitz in both state and time (Øksendal, 2003). We hereafter denote by ptpxq the
probability density of xptq, and use pstpxptq | xpsqq to denote the transition kernel from xpsq to xptq,
where 0 § s † t § T .

Typically, pT is an unstructured prior distribution that contains no information of p0, such as a
Gaussian distribution with fixed mean and variance. There are various ways of designing the SDE in
Eq. (5) such that it diffuses the data distribution into a fixed prior distribution. We provide several
examples later in Section 3.4 that are derived from continuous generalizations of SMLD and DDPM.

3.2 GENERATING SAMPLES BY REVERSING THE SDE

By starting from samples of xpT q „ pT and reversing the process, we can obtain samples xp0q „ p0.
A remarkable result from Anderson (1982) states that the reverse of a diffusion process is also a
diffusion process, running backwards in time and given by the reverse-time SDE:

dx “ rfpx, tq ´ gptq2rx log ptpxqsdt ` gptqdw̄, (6)

where w̄ is a standard Wiener process when time flows backwards from T to 0, and dt is an
infinitesimal negative timestep. Once the score of each marginal distribution, rx log ptpxq, is known
for all t, we can derive the reverse diffusion process from Eq. (6) and simulate it to sample from p0.

3.3 ESTIMATING SCORES FOR THE SDE

The score of a distribution can be estimated by training a score-based model on samples with
score matching (Hyvärinen, 2005; Song et al., 2019a). To estimate rx log ptpxq, we can train a
time-dependent score-based model s✓px, tq via a continuous generalization to Eqs. (1) and (3):
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Note that Eq. (7) uses denoising score matching, but other score matching objectives, such as sliced
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Figure 2: Overview of score-based generative modeling through SDEs. We can map data to a
noise distribution (the prior) with an SDE (Section 3.1), and reverse this SDE for generative modeling
(Section 3.2). We can also reverse the associated probability flow ODE (Section 4.3), which yields a
deterministic process that samples from the same distribution as the SDE. Both the reverse-time SDE
and probability flow ODE can be obtained by estimating the score rx log ptpxq (Section 3.3).
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infinitesimal negative timestep. Once the score of each marginal distribution, rx log ptpxq, is known
for all t, we can derive the reverse diffusion process from Eq. (6) and simulate it to sample from p0.
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We advance these models in three major directions:
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Figure 5: Left: Histogram of the cell energies. Right: Num-
ber of hits distributions for single energies at 10, 50, and
90 GeV. The bottom panel provides the ratio to GEANT4.
Figures taken from Ref. [39].

Finally, we distill this model into132

CALOCLOUDS II (CM), a consis-133

tency model (CM) [50] allowing for134

single shot generation without loss135

in fidelity. The diffusion model ar-136

chitecture uses weight sharing among137

all points, hence it samples all points138

independently and identically dis-139

tributed (i.i.d.) with respect to the140

global conditioning. Due to the141

computational efficiency of CALO-142

CLOUDS and the linear scaling of the143

computing cost with the point cloud144

size, the models can be applied to145

point clouds with a higher granularity146

than the actual physical sensors. This147

way, the models become largely cell148

geometry-independent, and showers149

can be projected into any part of the150

detector (except changing its depth)151

with minimal artifacts. We generated such a dataset with GEANT4 using photon showers with152

energies between 10 and 90 GeV. The dataset contains point clouds with up to 6,000 points per153

shower — noticeably higher than the number of cell hits (< 1, 500).154

Table 1: Comparison of the computational perfor-
mance of CALOCLOUDS, CALOCLOUDS II, and CALO-
CLOUDS II (CM) to the baseline GEANT4 simulator on
a single CPU core. The number of function evaluations
(NFE) indicate the number of diffusion model passes.
Table adapted from Ref. [39].

Simulator NFE Time / Shower [ms] Speed-up

GEANT4 3914.80 ± 74.09 ⇥1

CALOCLOUDS 100 3146.71 ± 31.66 ⇥1.2
CALOCLOUDS II 25 651.68 ± 4.21 ⇥6.0
CALOCLOUDS II (CM) 1 84.35 ± 0.22 ⇥46

We compare the generative fidelity of the155

CALOCLOUDS variants to GEANT4 with156

various cell-level and shower-level observ-157

ables after projecting the point cloud to the158

real ILD ECAL geometry with 30 layers159

each containing 30⇥30 cells. Fig. 5 shows160

the cell energy distribution for the full en-161

ergy spectrum and the number of hits (non-162

zero cells) for single energy showers. Over-163

all, both CALOCLOUDS II models improve164

upon CALOCLOUDS and reach a high fi-165

delity compared to GEANT4.166

In Tab. 1 we benchmark the speed-up of the167

CALOCLOUDS models over the GEANT4168

simulation. For a fair comparison the per-169

formance is compared on the same single CPU core, as GEANT4 does not support GPUs, and CPUs170

are cheaper and more widely available. Using consistency distllation, the CALOCLOUDS II (CM)171

model is able to generate photon showers 46⇥ faster than GEANT4. A comparison to the BIB-AE172

and L2LFLOWS models is not performed as the data structures are too different to allow for a fair173

compairson. More details on the CALOCLOUDS models can be found in Refs. [35, 39].174

5 Conclusion175

We have shown recent advances on three different frontiers in the generative modelling of calorimeter176

showers. Eventually we envision a model that combines all three: flexible conditional sampling,177

high fidelity, and computational efficiency. For the already established models, further fidelity and178

timing studies with common benchmark metrics datasets with the same dimensionalities should179

be performed. A valuable comparison is currently undertaken in form of the Fast Calorimeter180

Challenge [51]. Beyond photon showers, we plan to explore the generative modelling of hadronic181

showers, which are more challenging to model due to their more complex shower topology. For182

CALOCLOUDS this will likely necessitate a more complex model architecture taking inter-point183

correlations during sampling into account, e.g. by using linearly scalable EPiC layers [46] introduced184

for particle jet modelling. Finally, ongoing efforts are made to include the generative models as a185

drop-in replacement for parts the full GEANT4 simulation pipeline.186

4

Consistency Model

Speed-up using the CaloClouds Diffusion & Consisteny Models

Sampling from the CaloClouds II Model (Normalizing Flow & Diffusion Model)

Fast & Scalable: Point Cloud Diffusion arXiv:2305.04847 
arXiv:2309.05704

Sampling

Shower 
Flow

PointWise 
NetE

!(0, T2I)

 Ez,i, Nz,i Generated Shower
Calibration

 diffusion 
steps

NtN

Ncal

Energy Flow

Flow 2

Flow 1

Flow 30

Rescaling

E

Shower
Layer-to-Layer Flow Model (L2LFlows) L2LFlows improves cell energy distribution

GeV

GeV

GeV

Geant4 simulation

L2LFlows model

           Fidelity Enhancement: Layer-wise Normalizing Flow
arXiv:2302.11594

Bounded Information Bottleneck Autoencoder (BIB-AE)

Flexible Generation: Energy & Angle Conditioning
arXiv:2303.18150 

Generation of showers with fixed angles and fixed energies

Figure 4: Overlay of 95k showers for all simulators for the full spectrum, where the voxel energies
are summed along the I- (top), G- (middle) and H-axis (bottom). In all plots, the mean over the
number of showers is taken. For G����4, the shown colormap is the energy scale, whereas for
the BIB-AE and L2LF����, the colormap (both generative networks make use of the same one)
corresponds to the relative deviations to G����4, defined in Eqs. 4.1 and 4.2.

about 1%, for L2LF���� the deviation is everywhere below 0.75%. For the width plot,7 the relative

7One might be tempted to call d90 the “resolution”, but because of the different thicknesses of the tungsten absorber
layers, cf. Sec. 2, this is not the case [12].
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Figure 4: Illustration of the reverse di↵usion process. Starting from the initial

noise. The color scale corresponds to the point energy.

on additional quantities beyond multiplicity N and shower energy E.

In principle, one could add additional physically relevant quantities such as

the total visible energy, the center of gravity, or the shower start as explicit

conditioning features. However, such a choice of observables might bias the

generated showers. Instead, we opt for learning an additional global context vector

z to capture any other relevant distributions via an additional encoder.

This encoding is learned by an Equivariant Point Cloud (EPiC) Encoder

using three EPiC layers introduced in Ref. [27] with a hidden dimensionality of

128. The EPiC Encoder is conditioned on E and N and learns to encode the

original Geant4 point cloud into two latent space vectors µ and �. Similar to

the encoder in a VAE, µ and � are regularised towards a Gaussian distribution

with the Kullback-Leibler divergence (KLD) loss and the latent space z is sampled

with the reparametrization trick [44]. The KLD loss is given by:

LKLD = DKL(Z||N (0, 1)) = �
1

2

�
1 + log(�2) � µ2

� �2
�
, (6)

with the latent variables sampled via z ⇠ Z = N (µ,�2). We set the size of z to

256, the default in Ref. [32].
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Hardware Simulator NFE Batch Size Time / Shower [ms] Speed-up

CPU Geant4 3914.80 ± 74.09 ⇥1

CaloClouds 100 1 3146.71 ± 31.66 ⇥1.2

CaloClouds II 25 1 651.68 ± 4.21 ⇥6.0

CaloClouds II (CM) 1 1 84.35 ± 0.22 ⇥46

GPU CaloClouds 100 64 24.91 ± 0.72 ⇥157

CaloClouds II 25 64 6.12 ± 0.13 ⇥640

CaloClouds II (CM) 1 64 2.09 ± 0.13 ⇥1873

Table 3: Comparison of the computational performance of CaloClouds,

CaloClouds II, and CaloClouds II (CM) to the baseline Geant4 simulator

on a single core of an Intel® Xeon® CPU E5-2640 v4 (CPU) and on an NVIDIA®

A100 with 40 GB of memory (GPU). 2,000 showers were generated with incident

energy uniformly distributed between 10 and 90 GeV. Values presented are the

means and standard deviations over 10 runs. The number of function evaluations

(NFE) indicate the number of di↵usion model passes.

On GPU the CaloClouds model achieves a speed up of 157⇥,

CaloClouds II achieves 640⇥, and CaloClouds II (CM) achieves 1873⇥

speed up over the baseline Geant4 simulation on a single CPU. Note that

Geant4 is currently not compatible with GPUs and that GPUs are significantly

more expensive than CPUs.

For reference, the training of the CaloClouds model on similar NVIDIA®

A100 GPU hardware took around 80 hours for 800k iterations with a batch size

of 128, while training of the CaloClouds II model took around 50 hours for

2 million iterations with the same batch size. The consistency distillation for 1

million iterations with a batch size of 256 took about 100 hours.

The speed up between CaloClouds and CaloClouds II is the result of

a combination of the improved di↵usion paradigm requiring a reduced number of

function evaluations as well as the removal of the latent flow. The speed up due to

the consistency model in CaloClouds II (CM) yields another large factor, since

only a single model evaluation is performed. Both models would be slightly slower

when applied in conjunction with the Latent Flow of the CaloClouds model as
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Figure 5: Left: Histogram of the cell energies. Right: Num-
ber of hits distributions for single energies at 10, 50, and
90 GeV. The bottom panel provides the ratio to GEANT4.
Figures taken from Ref. [39].

Finally, we distill this model into132

CALOCLOUDS II (CM), a consis-133

tency model (CM) [50] allowing for134

single shot generation without loss135

in fidelity. The diffusion model ar-136

chitecture uses weight sharing among137

all points, hence it samples all points138

independently and identically dis-139

tributed (i.i.d.) with respect to the140

global conditioning. Due to the141

computational efficiency of CALO-142

CLOUDS and the linear scaling of the143

computing cost with the point cloud144

size, the models can be applied to145

point clouds with a higher granularity146

than the actual physical sensors. This147

way, the models become largely cell148

geometry-independent, and showers149

can be projected into any part of the150

detector (except changing its depth)151

with minimal artifacts. We generated such a dataset with GEANT4 using photon showers with152

energies between 10 and 90 GeV. The dataset contains point clouds with up to 6,000 points per153

shower — noticeably higher than the number of cell hits (< 1, 500).154

Table 1: Comparison of the computational perfor-
mance of CALOCLOUDS, CALOCLOUDS II, and CALO-
CLOUDS II (CM) to the baseline GEANT4 simulator on
a single CPU core. The number of function evaluations
(NFE) indicate the number of diffusion model passes.
Table adapted from Ref. [39].

Simulator NFE Time / Shower [ms] Speed-up

GEANT4 3914.80 ± 74.09 ⇥1

CALOCLOUDS 100 3146.71 ± 31.66 ⇥1.2
CALOCLOUDS II 25 651.68 ± 4.21 ⇥6.0
CALOCLOUDS II (CM) 1 84.35 ± 0.22 ⇥46

We compare the generative fidelity of the155

CALOCLOUDS variants to GEANT4 with156

various cell-level and shower-level observ-157

ables after projecting the point cloud to the158

real ILD ECAL geometry with 30 layers159

each containing 30⇥30 cells. Fig. 5 shows160

the cell energy distribution for the full en-161

ergy spectrum and the number of hits (non-162

zero cells) for single energy showers. Over-163

all, both CALOCLOUDS II models improve164

upon CALOCLOUDS and reach a high fi-165

delity compared to GEANT4.166

In Tab. 1 we benchmark the speed-up of the167

CALOCLOUDS models over the GEANT4168

simulation. For a fair comparison the per-169

formance is compared on the same single CPU core, as GEANT4 does not support GPUs, and CPUs170

are cheaper and more widely available. Using consistency distllation, the CALOCLOUDS II (CM)171

model is able to generate photon showers 46⇥ faster than GEANT4. A comparison to the BIB-AE172

and L2LFLOWS models is not performed as the data structures are too different to allow for a fair173

compairson. More details on the CALOCLOUDS models can be found in Refs. [35, 39].174

5 Conclusion175

We have shown recent advances on three different frontiers in the generative modelling of calorimeter176

showers. Eventually we envision a model that combines all three: flexible conditional sampling,177

high fidelity, and computational efficiency. For the already established models, further fidelity and178

timing studies with common benchmark metrics datasets with the same dimensionalities should179

be performed. A valuable comparison is currently undertaken in form of the Fast Calorimeter180

Challenge [51]. Beyond photon showers, we plan to explore the generative modelling of hadronic181

showers, which are more challenging to model due to their more complex shower topology. For182

CALOCLOUDS this will likely necessitate a more complex model architecture taking inter-point183

correlations during sampling into account, e.g. by using linearly scalable EPiC layers [46] introduced184

for particle jet modelling. Finally, ongoing efforts are made to include the generative models as a185

drop-in replacement for parts the full GEANT4 simulation pipeline.186
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Figure 4: Overlay of 95k showers for all simulators for the full spectrum, where the voxel energies
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number of showers is taken. For G����4, the shown colormap is the energy scale, whereas for
the BIB-AE and L2LF����, the colormap (both generative networks make use of the same one)
corresponds to the relative deviations to G����4, defined in Eqs. 4.1 and 4.2.

about 1%, for L2LF���� the deviation is everywhere below 0.75%. For the width plot,7 the relative

7One might be tempted to call d90 the “resolution”, but because of the different thicknesses of the tungsten absorber
layers, cf. Sec. 2, this is not the case [12].
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Figure 4: Illustration of the reverse di↵usion process. Starting from the initial

noise. The color scale corresponds to the point energy.

on additional quantities beyond multiplicity N and shower energy E.

In principle, one could add additional physically relevant quantities such as

the total visible energy, the center of gravity, or the shower start as explicit

conditioning features. However, such a choice of observables might bias the

generated showers. Instead, we opt for learning an additional global context vector

z to capture any other relevant distributions via an additional encoder.

This encoding is learned by an Equivariant Point Cloud (EPiC) Encoder

using three EPiC layers introduced in Ref. [27] with a hidden dimensionality of

128. The EPiC Encoder is conditioned on E and N and learns to encode the

original Geant4 point cloud into two latent space vectors µ and �. Similar to

the encoder in a VAE, µ and � are regularised towards a Gaussian distribution

with the Kullback-Leibler divergence (KLD) loss and the latent space z is sampled

with the reparametrization trick [44]. The KLD loss is given by:

LKLD = DKL(Z||N (0, 1)) = �
1

2

�
1 + log(�2) � µ2

� �2
�
, (6)

with the latent variables sampled via z ⇠ Z = N (µ,�2). We set the size of z to

256, the default in Ref. [32].
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Figure 3: Histogram of the cell energies (left), radial shower profile (center), and

longitudinal shower profile (right) for Geant4, CaloClouds, CaloClouds II,

and CaloClouds II (CM). In the cell energy distribution, the region below

0.1 MeV is grayed out (see main text for details). All distributions are calculated

with 40,000 events sampled with a uniform distribution of incident particle energies

between 10 and 90 GeV. The bottom panel provides the ratio to Geant4. Values

outside the range are indicated by small triangles.

4.1. Physics Performance

In this Section, we compare various calorimeter shower distributions from Ref. [40]

between the Geant4 test set and datasets generated using CaloClouds,

CaloClouds II, and CaloClouds II (CM). First, we compare various cell-level

and shower observables calculated from the model generated showers to Geant4

simulations with samples of incident photons with energies uniformly distributed

between 10 and 90 GeV (also referred to as full spectrum). In Fig. 3 we investigate

three representations of the energy distributed in the calorimeter cells, namely

the per-cell energy distribution (left), the radial shower profile (center) and the

longitudinal shower profile (right). The per-cell energy distribution contains the

energy of the cells of all showers in the test dataset. The peak of the distribution at

about 0.2 MeV corresponds to the most probable energy deposition of a minimum

ionising particle (MIP) in the silicon sensor. For downstream analyses a cell energy

cut at half a MIP is applied, since below this threshold the sensor response is

indistinguishable from electronic noise. Hence this cut was applied to all showers

when calculating the shower observables and scores in this section. All models
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Hardware Simulator NFE Batch Size Time / Shower [ms] Speed-up

CPU Geant4 3914.80 ± 74.09 ⇥1

CaloClouds 100 1 3146.71 ± 31.66 ⇥1.2

CaloClouds II 25 1 651.68 ± 4.21 ⇥6.0

CaloClouds II (CM) 1 1 84.35 ± 0.22 ⇥46

GPU CaloClouds 100 64 24.91 ± 0.72 ⇥157

CaloClouds II 25 64 6.12 ± 0.13 ⇥640

CaloClouds II (CM) 1 64 2.09 ± 0.13 ⇥1873

Table 3: Comparison of the computational performance of CaloClouds,

CaloClouds II, and CaloClouds II (CM) to the baseline Geant4 simulator

on a single core of an Intel® Xeon® CPU E5-2640 v4 (CPU) and on an NVIDIA®

A100 with 40 GB of memory (GPU). 2,000 showers were generated with incident

energy uniformly distributed between 10 and 90 GeV. Values presented are the

means and standard deviations over 10 runs. The number of function evaluations

(NFE) indicate the number of di↵usion model passes.

On GPU the CaloClouds model achieves a speed up of 157⇥,

CaloClouds II achieves 640⇥, and CaloClouds II (CM) achieves 1873⇥

speed up over the baseline Geant4 simulation on a single CPU. Note that

Geant4 is currently not compatible with GPUs and that GPUs are significantly

more expensive than CPUs.

For reference, the training of the CaloClouds model on similar NVIDIA®

A100 GPU hardware took around 80 hours for 800k iterations with a batch size

of 128, while training of the CaloClouds II model took around 50 hours for

2 million iterations with the same batch size. The consistency distillation for 1

million iterations with a batch size of 256 took about 100 hours.

The speed up between CaloClouds and CaloClouds II is the result of

a combination of the improved di↵usion paradigm requiring a reduced number of

function evaluations as well as the removal of the latent flow. The speed up due to

the consistency model in CaloClouds II (CM) yields another large factor, since

only a single model evaluation is performed. Both models would be slightly slower

when applied in conjunction with the Latent Flow of the CaloClouds model as
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• Expect physics beyond the Standard Model


• Only negative results in searches


• Two discovery strategies:


• Model-specific


• Model independent

Anomaly detections



Dataset
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m(Z’) = 3500 GeV

m(X) = 500 GeV

m(Y) = 100 GeV

(R&D dataset)

• LHC Olympics (LHCO): Community dataset 
for anomaly detection development


• Z’ signal, QCD di-jet backgrounds
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 6. Background rejection (left) and significance improvement (right) of the various anomaly classifiers as a function of
the signal e�ciency. The solid lines are deduced from a median value of 10 fully independent trainings on the same training,
validation and evaluation set. The uncertainty bands quantify the variance from retraining the NNs on the same, fixed dataset
and are defined such that they contain 68% of the runs around the median.

FIG. 7. Left: Median maximum significance improvement of each method with 10 di↵erent signal injections (leading to a
di↵erent split of training, validation and evaluation sets in each run) at each decreasing value of signal/background ratios.
Here, the 68% hatched uncertainty bands quantify the variance (around the median) from both retrainings of the NN and

random realizations of the training and validation data, including di↵erent realizations of the 1,000 injected signal events.
Right: Achieved maximum significance, which is computed by multiplying the uncut significance by the maximum significance
improvement. Both plots feature the significance without any cut applied in the upper horizontal axis. The dotted lines on the
right hand side denote 3 and 5 � significance values.

• Both Cathode and Anode need to learn the
smoothly varying background. However, Anode
must also learn the sharply peaked distributions in
x where the signal is localized (the “inner” den-
sity estimator trained on the SR). This results in
a degradation of the Anode anomaly detection
method and worse performance than Cathode and
CWoLa Hunting.

• As for how Cathode is able to outperform CWoLa
Hunting, there are two reasons. Firstly, there is a
correlation at the percent level between the cho-

sen features in x within the original LHCO R&D
dataset with the search variable (mJJ). Since
CWoLa Hunting is very sensitive to correlations,
this small correlation is su�cient to degrade the
performance compared to that of Cathode. De-
tails of the correlation study can be found in
Sec. IVC. Secondly, CWoLa Hunting is limited to
only using the events within the sidebands to train
the classifier (approximately 65,000 events), while
Cathode is able to oversample events from the
background model (here 200,000 events are used).
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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In this paper, we introduce a method for e�ciently generating jets in the field of High Energy
Physics. Our model is designed to generate ten di↵erent types of jets, expanding the versatility of jet
generation techniques. Beyond the kinematic features of the jet constituents, our model also excels in
generating informative features that provide insight into the types of jet constituents, such as features
that indicate if a constituent is an electron or a photon, o↵ering a more comprehensive understanding
of the generated jets. Furthermore, our model incorporates valuable impact parameter information,
enhancing its potential utility in high-energy physics research.

I. INTRODUCTION

Recently there has been considerable interest and
activity in generative modeling for jet constituents.
While showering and hadronization with standard
programs such as Pythia and Herwig is not a ma-
jor computational bottleneck at the LHC [1] what

about NLO generators?, generative modeling at
the jet constituent level still has potentially far-
reaching applications to anomaly detection [2] and
beyond. More generally it is also an interesting
laboratory for method development. In particular,
it has been fruitful and e↵ective to view the jet
constituents as a high-dimensional point cloud, and
to devise methods for point cloud generative mod-
els that incorporate permutation invariance. This
route has led to a number of state-of-the-art ap-
proaches, recently explored in [3–11], that combine
di↵erent permutation-invariant layers such as trans-
formers [12] and the EPiC layer [4], with state-of-
the-art generative modeling frameworks such as dif-
fusion [13–17] and flow-matching [18–21]. Successful
models developed for jet point clouds can also po-
tentially be adapted to other important point cloud
generative modeling problems such as for fast emu-
lation of GEANT4 calorimeter showers [9, 11].

So far this activity has focused almost exclusively
on the JetNet dataset of [22, 23]. Originally gener-
ated by [24], this dataset was subsequently adopted
in the works of [3] as a useful benchmark dataset
for jet generative modeling. However, the JetNet
dataset has a number of drawbacks that are readily
becoming apparent. First and foremost is the size –
since it is limited in size, there are not enough jets
in JetNet to facilitate the training of state-of-the-art
generative models as well as metrics such as the bi-
nary classifier metric which require additional train-
ing data. Second, JetNet uses small-radius (R = 0.4)
jets, despite saying otherwise in their papers. This

⇤
joschka.birk@uni-hamburg.de

FIG. 1: Schematic overview of the di↵erent jet con-
stituent features available in the JetClass dataset.
The horizontal line at the bottom represents the
beam axis and the circle on this line represents the
primary vertex (PV).

can lead to the problem that the decay products are
not fully contained in the jet, which can be seen e.g.
in distributions such as the jet mass for top quarks,
where there is a prominent secondary mass peak.
Finally, JetNet focuses solely on the kinematics of
the jet constituents, whereas there is a wealth of ad-
ditional information inside the jets that could also
be modeled, such as trajectory displacement, charge,
and particle ID as illustrated in Figure 1.

In this work, we introduce the first jet cloud
modeling on the much larger dataset of JetClass.
Other than demonstrating that existing techniques
scale well to this new dataset, we also tackle new
challenges introduced by the JetClass dataset, in-

Jet constituents
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Figure 5: Same as Fig. 3 but for the JetNet30 top quark dataset.

Jet class Model
W M

1
( x10�3 )

W P
1

( x10�3 )
W EFP

1
( x10�5 )

Gluon
Truth 0.3 ± 0.1 0.3 ± 0.1 0.7 ± 0.3
EPiC-GAN 0.4 ± 0.1 3.2 ± 0.2 1.1 ± 0.7

Light
quark

Truth 0.3 ± 0.1 0.3 ± 0.2 0.6 ± 0.5
EPiC-GAN 0.4 ± 0.1 3.9 ± 0.3 0.7 ± 0.4

Top
Truth 0.3 ± 0.1 0.2 ± 0.1 1.3 ± 0.8
EPiC-GAN 0.6 ± 0.1 3.7 ± 0.3 2.8 ± 0.7

Table 3: Evaluation scores for the JetNet150 dataset. The truth values are a compar-
ison between the test and training set. Lower is better for all scores.

3.4 JetNet150 Results

Having observed competitive results with the EPiC-GAN on the JetNet30 datasets, we now
show results for the more challenging JetNet150 dataset with up to 150 particles. We do not
have a comparison with another generative model, since to our knowledge we are the first to
show a well performing and fast generating model on a jet dataset with such large particle
multiplicity.

The model architecture and training procedure is the same as for the JetNet30 datasets
from Sec. 3.3. In the following, we comparing the EPiC-GAN results for the JetNet150 gluon,
light quark and top datasets to the test dataset using the Wasserstein-1 distance metrics. We
then show the previously discussed nine particle- and jet-level distributions for the JetNet150
top dataset, which is the most challenging of the three datasets.

In Table 3, we compare EPiC-GAN generated events to the JetNet150 truth with the three
Wasserstein-1 distances introduced in Sec. 3.3. As of writing this publication, the FPND evalu-
ation score was not available for the JetNet150 dataset. For both the gluon and the light quark

12
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Figure 2: Architecture implementation of the EPiC GAN. Both the (a) generator and
(b) discriminator consist of multiple EPiC layers from Fig. 1 as well as (shared) neu-
ral networks for input/output dimensionality expansion/reduction. The � symbol
represents the aggregation function ⇢p!g with both element-wise summation and
average pooling. Though not shown, there are additional residual connections be-
tween EPiC layers described in the text.
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Figure 5: Same as Fig. 3 but for the JetNet30 top quark dataset.

Jet class Model
W M

1
( x10�3 )

W P
1

( x10�3 )
W EFP

1
( x10�5 )

Gluon
Truth 0.3 ± 0.1 0.3 ± 0.1 0.7 ± 0.3
EPiC-GAN 0.4 ± 0.1 3.2 ± 0.2 1.1 ± 0.7

Light
quark

Truth 0.3 ± 0.1 0.3 ± 0.2 0.6 ± 0.5
EPiC-GAN 0.4 ± 0.1 3.9 ± 0.3 0.7 ± 0.4

Top
Truth 0.3 ± 0.1 0.2 ± 0.1 1.3 ± 0.8
EPiC-GAN 0.6 ± 0.1 3.7 ± 0.3 2.8 ± 0.7

Table 3: Evaluation scores for the JetNet150 dataset. The truth values are a compar-
ison between the test and training set. Lower is better for all scores.

3.4 JetNet150 Results

Having observed competitive results with the EPiC-GAN on the JetNet30 datasets, we now
show results for the more challenging JetNet150 dataset with up to 150 particles. We do not
have a comparison with another generative model, since to our knowledge we are the first to
show a well performing and fast generating model on a jet dataset with such large particle
multiplicity.

The model architecture and training procedure is the same as for the JetNet30 datasets
from Sec. 3.3. In the following, we comparing the EPiC-GAN results for the JetNet150 gluon,
light quark and top datasets to the test dataset using the Wasserstein-1 distance metrics. We
then show the previously discussed nine particle- and jet-level distributions for the JetNet150
top dataset, which is the most challenging of the three datasets.

In Table 3, we compare EPiC-GAN generated events to the JetNet150 truth with the three
Wasserstein-1 distances introduced in Sec. 3.3. As of writing this publication, the FPND evalu-
ation score was not available for the JetNet150 dataset. For both the gluon and the light quark
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Fig. 1: Schematic overview of the EPiC-JeDi and EPiC-FM training (left) and generation (right) pipeline.
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Fig. 2: Model schema of the EPiC Network generator architecture used in both EPiC-JeDi and EPiC-FM. Each multi-layer perceptron (MLP)
is a two-layer neural network with LeakyReLU activation. The pooling operation is a concatenation of both average and summation pooling.

(�⌘, ��, prel
T ), where

�⌘ = ⌘const �⌘jet,

�� = �const ��jet,

prel
T = pconst

T /pjet
T .

The jet four momentum vectors are calculated from the
vector sum of all constituents. All input variables are nor-
malised by their mean and standard deviation in the train-
ing dataset.

Furthermore we examine two scenarios for each
model:

– Unconditional the models are trained on the input
data solely comprising of the jet constituents features
x = (�⌘,��, prel

T ).
– Conditional the models are trained on jet constituents

x conditioned on jet-level features y = (pjet
T , mjet).

These features have been derived from the data
using a normalizing flow paired with a masked
autoregressive architecture.

Substructure observables are calculated from the jet
constituents for the purposes of evaluating the quality

of the generative model. In this work we focus on the
N-subjettiness [84] and energy correlation functions [85]
which are commonly used by the ATLAS and CMS collab-
orations, as well as the recently introduced energy flow
polynomials (EFPs) [86]. To assess the generation perfor-
mance we follow the procedure introduced in Ref. [45] as
well as additional measures studied in Refs. [46, 47]. All
substructure variables are calculated using the relative
pT of the constituents, and are not renormalised by the
inclusive jet pT.

4.3 Evaluation metrics

To assess the generation performance of each model, we
follow the procedure described in Ref. [45] as well as ad-
ditional measures studied in Refs. [46, 47]. However, in-
stead of using the Wasserstein-1 distance between gener-
ated showers and the target distributions we measure the
agreement using the Kullback-Leibler divergence (KLD).

As the Wasserstein-1 distance in one dimension is cal-
culated as the area between the two cumulative distribu-
tion functions, it is very sensitive to overall shifts in distri-

Training Generation
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FIG. 4: Average fraction of jet constituents of di↵erent particle types. For each jet type, the intervals show
the mean value over all evaluated jets with up and down variations of one standard deviation. The dotted
lines show the values obtained for real jets from the JetClass dataset and the solid lines show the values
obtained for the generated jets.

While particles in t ! bqq
0 jets have on average a

larger ⌘rel and thus have an overall wider ⌘rel distri-
bution, q/g jets are more collimated, resulting in a
sharper ⌘

rel peak around ⌘
rel = 0. Concerning the

p
rel
T distribution, t ! bqq

0 jets are expected to show a
smaller tail towards larger prelT values, since t ! bqq

0

jets contain on average more constituents and thus
the jet pT is distributed over more particles, leading
to smaller p

rel
T values. The generated distributions

of all three kinematic features agree very well with
the corresponding distribution from the JetClass
dataset, showing that our model is capable of gener-
ating jets of very di↵erent kinematic properties. This
is also confirmed by the KL divergence values listed
in Table II, which only have a small deviation from
the truth values.

A comparison of the trajectory displacement mod-
eling is shown in Figure 3 for H ! bb̄, H ! cc̄

and H ! gg jets. Due to the long lifetime of b-
and c-hadrons, the trajectory displacement of jet
constituents associated with those hadrons is ex-
pected to be on average larger than for other jet
constituents. Thus, the trajectory displacement dis-
tributions of H ! bb̄ and H ! cc̄ jets are expected
to be wider than the trajectory displacement distri-
bution of H ! gg jets. Since the trajectory displace-
ment is by definition zero for neutral particles in the
JetClass dataset, only charged particles are con-
sidered in the histograms in Figure 3. For all three
jet types, the histograms of the generated jets agree
very well with the histograms of the real jets, show-
ing that our model is capable of correctly modeling

the trajectory displacement of the jet constituents.
Notably, our model is able to catch the essential dif-
ferences between the trajectory displacement distri-
butions of H ! bb̄, H ! cc̄ and H ! gg jets, which
is an important feature from the physics point of
view. However, as seen both in the ratio panels in
Figure 3 and in the corresponding KL divergence val-
ues in Table II, the agreement between the target
distribution and the distribution obtained from the
generated jets is worse for the impact parameter fea-
tures than for the kinematic features, showing that
the modeling of these distributions is more challeng-
ing. This could be further optimized in future work
by choosing a di↵erent preprocessing for the impact
parameter features, by e.g. transforming them using
the hyperbolic tangent function, which would remove
the large tails of the distributions.

The evaluation of the particle-ID modeling is
shown in Figure 4, where we show the average frac-
tion of jet constituents of di↵erent particle types for
all ten jet types. For each jet type, the intervals show
the mean value over all evaluated jets with up and
down variation of one standard deviation. The agree-
ment between the generated jets and the real jets is
very good for all jet types, showing that on average
the generated jets contain the same fraction of di↵er-
ent particle types as the real jets. The modeling of
the electric charge also shows very good agreement,
which is shown in the Appendix in Section A.
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FIG. 5: Jet mass (a) and subjettiness ratios ⌧32 (b) and ⌧21 (c) for all ten jet types. The histograms in
dotted lines show the distributions obtained from the JetClass dataset (i.e. real jets) and the solid lines
show the histograms obtained from the generated jets. Jets from the categories H ! bb̄, H ! cc̄ and H ! gg

are grouped into one joint histogram for better readability, since the individual histograms show very similar
shapes.

B. Jet substructure modeling

The jet mass mjet and the two subjettiness ra-
tios ⌧32 and ⌧21 are shown in Figure 5 for the dif-
ferent jet types. The real jets are shown in dotted
lines while the generated jets are shown in solid lines.
Both the jet mass and the subjettiness ratio distri-
butions show very good agreement for all jet types.
The largest deviations between the target distribu-
tion and the distribution of the generated jets are
seen for t ! bqq

0 and H ! `⌫qq
0, where the distri-

bution of the generated jets peaks at a larger value
of ⌧32. This mismodeling also shows in the values
of the KL divergence which are listed in Table III
for some of the jet-level observables. Further stud-

ies were done to determine whether narrowing down
our model’s features to just kinematics and whether
training solely on t ! bqq

0 jets enhances the model-
ing of the t ! bqq

0 substructure, which can be found
in the Appendix in Section C.

C. Classifier test

In addition to the evaluation presented in the
previous subsections, we also investigate the per-
formance of our model with the classifier test pro-
posed in Ref. [41]. Thus, a binary classifier is trained
to distinguish between real jets from the JetClass
dataset and fake jets that were generated with our

7

(a)

(b)

(c)

FIG. 5: Jet mass (a) and subjettiness ratios ⌧32 (b) and ⌧21 (c) for all ten jet types. The histograms in
dotted lines show the distributions obtained from the JetClass dataset (i.e. real jets) and the solid lines
show the histograms obtained from the generated jets. Jets from the categories H ! bb̄, H ! cc̄ and H ! gg

are grouped into one joint histogram for better readability, since the individual histograms show very similar
shapes.

B. Jet substructure modeling

The jet mass mjet and the two subjettiness ra-
tios ⌧32 and ⌧21 are shown in Figure 5 for the dif-
ferent jet types. The real jets are shown in dotted
lines while the generated jets are shown in solid lines.
Both the jet mass and the subjettiness ratio distri-
butions show very good agreement for all jet types.
The largest deviations between the target distribu-
tion and the distribution of the generated jets are
seen for t ! bqq

0 and H ! `⌫qq
0, where the distri-

bution of the generated jets peaks at a larger value
of ⌧32. This mismodeling also shows in the values
of the KL divergence which are listed in Table III
for some of the jet-level observables. Further stud-

ies were done to determine whether narrowing down
our model’s features to just kinematics and whether
training solely on t ! bqq

0 jets enhances the model-
ing of the t ! bqq

0 substructure, which can be found
in the Appendix in Section C.

C. Classifier test

In addition to the evaluation presented in the
previous subsections, we also investigate the per-
formance of our model with the classifier test pro-
posed in Ref. [41]. Thus, a binary classifier is trained
to distinguish between real jets from the JetClass
dataset and fake jets that were generated with our
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. SIC curves for Nsig = 1000 (left) and Nsig = 300 (right). R-Anode with a learnable w almost saturates the performance
of an idealized R-Anode where w is fixed to its true value during training. Both these methods outperform the IAD and Anode.
The supervised classifier sets the upper limit for performance of all these methods, and at larger signal strengths, R-Anode
saturates this upper limit before the IAD does.

FIG. 2. Left: SIC (at FPR = 0.001) vs Nsig (amount of signal injected to data). Right: Total significance achieved (at
FPR=0.001) vs Nsig. Again we see that R-Anode with learnable w matches the idealized R-Anode with w = wtrue, and both
outperform IAD and Anode, across a wide range of signal levels.

training, for di↵erent amounts of injected signal. Then
we present the results for di↵erent fixed values of w for
Nsig = 1000. And finally, we show the results for the case
where we attempt to learn w.

We compare R-Anode to Anode, the IAD, and a
fully supervised classifier. For all figures, unless other-
wise mentioned, the curves show the median value and
68% confidence bands for the results obtained by retrain-
ing the methods on 10 di↵erent datasets described in
Sec. IIIA corresponding to di↵erent randomly-selected
signal injections. Since the upper limit for performance of
the classifier-based data-driven approaches like CWoLA
[11, 12], CATHODE [17], CURTAINS [25], etc. is the
IAD, we omit the explicit comparison to these methods.
The supervised classifier sets the upper bound to per-

formance for all methods on this signal hypothesis. In-
terestingly, as observed in [17, 25, 29], for these signal
injections there is a di↵erence in performance between
the IAD and supervised classifier. This is because the
IAD is not actually fully optimal – it is limited by finite
training statistics and finite model capacity. The truly
optimal AD given by Eq. (1) would be completely equiv-
alent to the fully supervised classifier, since it would be
monotonic with it [17].

A. Idealized version: fixing w = wtrue

We study the performance of R-Anode for di↵er-
ent amounts of signal-injections, in the idealized sce-
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.

pB pB

pD
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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cannot fully approach the optimal anomaly detector or
(by extension) the fully supervised classifier. R-Anode
is able to surpass the IAD since it assumes more about
the signal vs. background mixture.

In R-Anode, one has the option to fix the signal frac-
tion w during training or to let it be a learnable pa-
rameter along with the signal density. We explore both
options in this work, finding that for fixed w, the method
is quite robust to w-misspecification, retaining excellent
sensitivity to the signal even when w is larger or smaller
than the true w by nearly an order of magnitude. For
learnable w, we find that the method is robust and there
is only a slight drop in overall signal sensitivity; further-
more, the learned w tracks the true w well down to a
lower threshold of ⇠ 200 signal events. Thus R-Anode
could potentially be used to place measure or place limits
on the signal fraction directly.

Finally, with the learned signal density, one can also
draw potentially unbiased signal samples and directly
learn about the properties of the new physics model hid-
ing in the data. In this way, R-Anode simultaneously of-
fers significantly improved performance over other meth-
ods and also much greater interpretability.

This paper is organized as follows: Section II de-
scribes the R-Anode method; Section III introduces the
datasets and model definitions used in this work; Section
IV describes our results, including training with fixed
w = wtrue (Sec. IVA), scanning over fixed w (Sec. IVB),
training with learnable w (Sec. IVC), and sampling from
the learned signal model (Sec. IVD). Finally, Section V
contains our conclusions and outlook. Appendix A de-
scribes further details of the architecture and hyperpa-
rameters used in our implementation of R-Anode, and
Appendix B contains more details about the learnable w
case.

II. RESIDUAL ANODE METHOD

In R-Anode we model the signal distribution
psig(x,m) for m 2 SR directly with a normalizing flow
and use it to fit to data from equation (2). We minimize
the negative log likelihood averaged over the SR data:

L = �Ex,m⇠SR data log pdata(x,m) (3)

with respect to the parameters of psig(x,m) while keeping
pbg(x,m) fixed during training.

To obtain the joint background density in the SR from
the sidebands, we break it up into two factors:

pbg(x,m) = pbg(x|m)pbg(m) (4)

The first factor, the conditional density pbg(x|m 2 SR),
is obtained by interpolating from the sidebands similar
to [13, 17]. The second factor, the background mass dis-
tribution pbg(m 2 SR), can be similarly obtained by in-
terpolating from sidebands or (as we do in this work)
approximating it with the data mass distribution under

the assumption that there is no statistically significant
anomaly in the inclusive bump hunt. This allows us to
get pbg(x,m) for m 2 SR.
For the signal fraction w, we explore two options:

1. Hold w fixed during training. We then scan over
di↵erent values of w, exploring the e↵ect of fixing
w to be larger or smaller than the true w.

2. Keep w as a learnable parameter during training,
with the same optimizer and hyperparameters used
for psig(x,m).1

We note that the true signal fraction wtrue is related to
the number of signal and background events in the SR:

wtrue =
Nsig, SR

Nsig, SR +Nbg, SR
(5)

For small amounts of signal that we assume through-
out this work, this relation is approximately linear, i.e.
wtrue ⇡ Nsig, SR/Nbg, SR.
Finally, the anomaly score is constructed as

R(x,m) =
psig(x,m)

pbg(x,m)
. (6)

III. SETUP

A. Dataset

We use the LHCO R&D Dataset [8, 32] for our studies
with dataset and train-val-test splits similar to [13, 17].
In the following, a brief summary of the dataset is given.
QCD dijet events form the Standard Model(SM) back-

ground, and W 0 ! X(! qq)Y (! qq) events with
mW 0 = 3.5TeV, mX = 500GeV and mY = 100GeV
are used as signal. These are simulated using Pythia 8

[33, 34] and Delphes 3.4.1 [35–37]. The reconstructed
particles are clustered into jets using the anti-kT algo-
rithm [38, 39] with R = 1 using Fastjet [40]. Events are
required to satisfy the pT > 1.2TeV jet trigger.
The training features used are

m = mJJ , x = [mJ1 ,�mJ , ⌧21
J1 , ⌧21

J2 ], (7)

where invariant masses of the subjets satisfy mJ1 < mJ2 ,
and �mJ = mJ2 � mJ1 . The n-subjettiness ratios are
defined as ⌧ij = ⌧i/⌧j [41, 42]. 2 The resonant variable is
chosen as the dijet invariant mass mJJ , with the signal

1
Using a di↵erent optimizer and hyperparameter to learn w

might be interesting, but it could also necessitate further hyperpa-

rameter tuning, so we save this for future work.
2
These features correspond to the baseline features defined in

[29], along with the invariant mass mJJ . We leave exploring the

e↵ects of noisy features, and extended set of features for a future

study.

Anomaly score
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FIG. 1. SIC curves for Nsig = 1000 (left) and Nsig = 300 (right). R-Anode with a learnable w almost saturates the performance
of an idealized R-Anode where w is fixed to its true value during training. Both these methods outperform the IAD and Anode.
The supervised classifier sets the upper limit for performance of all these methods, and at larger signal strengths, R-Anode
saturates this upper limit before the IAD does.

FIG. 2. Left: SIC (at FPR = 0.001) vs Nsig (amount of signal injected to data). Right: Total significance achieved (at
FPR=0.001) vs Nsig. Again we see that R-Anode with learnable w matches the idealized R-Anode with w = wtrue, and both
outperform IAD and Anode, across a wide range of signal levels.

training, for di↵erent amounts of injected signal. Then
we present the results for di↵erent fixed values of w for
Nsig = 1000. And finally, we show the results for the case
where we attempt to learn w.

We compare R-Anode to Anode, the IAD, and a
fully supervised classifier. For all figures, unless other-
wise mentioned, the curves show the median value and
68% confidence bands for the results obtained by retrain-
ing the methods on 10 di↵erent datasets described in
Sec. IIIA corresponding to di↵erent randomly-selected
signal injections. Since the upper limit for performance of
the classifier-based data-driven approaches like CWoLA
[11, 12], CATHODE [17], CURTAINS [25], etc. is the
IAD, we omit the explicit comparison to these methods.
The supervised classifier sets the upper bound to per-

formance for all methods on this signal hypothesis. In-
terestingly, as observed in [17, 25, 29], for these signal
injections there is a di↵erence in performance between
the IAD and supervised classifier. This is because the
IAD is not actually fully optimal – it is limited by finite
training statistics and finite model capacity. The truly
optimal AD given by Eq. (1) would be completely equiv-
alent to the fully supervised classifier, since it would be
monotonic with it [17].

A. Idealized version: fixing w = wtrue

We study the performance of R-Anode for di↵er-
ent amounts of signal-injections, in the idealized sce-

R-ANODE outperforms 
idealised anomaly detector 
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FIG. 1. SIC curves for Nsig = 1000 (left) and Nsig = 300 (right). R-Anode with a learnable w almost saturates the performance
of an idealized R-Anode where w is fixed to its true value during training. Both these methods outperform the IAD and Anode.
The supervised classifier sets the upper limit for performance of all these methods, and at larger signal strengths, R-Anode
saturates this upper limit before the IAD does.

FIG. 2. Left: SIC (at FPR = 0.001) vs Nsig (amount of signal injected to data). Right: Total significance achieved (at
FPR=0.001) vs Nsig. Again we see that R-Anode with learnable w matches the idealized R-Anode with w = wtrue, and both
outperform IAD and Anode, across a wide range of signal levels.

training, for di↵erent amounts of injected signal. Then
we present the results for di↵erent fixed values of w for
Nsig = 1000. And finally, we show the results for the case
where we attempt to learn w.

We compare R-Anode to Anode, the IAD, and a
fully supervised classifier. For all figures, unless other-
wise mentioned, the curves show the median value and
68% confidence bands for the results obtained by retrain-
ing the methods on 10 di↵erent datasets described in
Sec. IIIA corresponding to di↵erent randomly-selected
signal injections. Since the upper limit for performance of
the classifier-based data-driven approaches like CWoLA
[11, 12], CATHODE [17], CURTAINS [25], etc. is the
IAD, we omit the explicit comparison to these methods.
The supervised classifier sets the upper bound to per-

formance for all methods on this signal hypothesis. In-
terestingly, as observed in [17, 25, 29], for these signal
injections there is a di↵erence in performance between
the IAD and supervised classifier. This is because the
IAD is not actually fully optimal – it is limited by finite
training statistics and finite model capacity. The truly
optimal AD given by Eq. (1) would be completely equiv-
alent to the fully supervised classifier, since it would be
monotonic with it [17].

A. Idealized version: fixing w = wtrue

We study the performance of R-Anode for di↵er-
ent amounts of signal-injections, in the idealized sce-
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In this paper, we introduce a method for e�ciently generating jets in the field of High Energy
Physics. Our model is designed to generate ten di↵erent types of jets, expanding the versatility of jet
generation techniques. Beyond the kinematic features of the jet constituents, our model also excels in
generating informative features that provide insight into the types of jet constituents, such as features
that indicate if a constituent is an electron or a photon, o↵ering a more comprehensive understanding
of the generated jets. Furthermore, our model incorporates valuable impact parameter information,
enhancing its potential utility in high-energy physics research.

I. INTRODUCTION

Recently there has been considerable interest and
activity in generative modeling for jet constituents.
While showering and hadronization with standard
programs such as Pythia and Herwig is not a ma-
jor computational bottleneck at the LHC [1] what

about NLO generators?, generative modeling at
the jet constituent level still has potentially far-
reaching applications to anomaly detection [2] and
beyond. More generally it is also an interesting
laboratory for method development. In particular,
it has been fruitful and e↵ective to view the jet
constituents as a high-dimensional point cloud, and
to devise methods for point cloud generative mod-
els that incorporate permutation invariance. This
route has led to a number of state-of-the-art ap-
proaches, recently explored in [3–11], that combine
di↵erent permutation-invariant layers such as trans-
formers [12] and the EPiC layer [4], with state-of-
the-art generative modeling frameworks such as dif-
fusion [13–17] and flow-matching [18–21]. Successful
models developed for jet point clouds can also po-
tentially be adapted to other important point cloud
generative modeling problems such as for fast emu-
lation of GEANT4 calorimeter showers [9, 11].

So far this activity has focused almost exclusively
on the JetNet dataset of [22, 23]. Originally gener-
ated by [24], this dataset was subsequently adopted
in the works of [3] as a useful benchmark dataset
for jet generative modeling. However, the JetNet
dataset has a number of drawbacks that are readily
becoming apparent. First and foremost is the size –
since it is limited in size, there are not enough jets
in JetNet to facilitate the training of state-of-the-art
generative models as well as metrics such as the bi-
nary classifier metric which require additional train-
ing data. Second, JetNet uses small-radius (R = 0.4)
jets, despite saying otherwise in their papers. This
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FIG. 1: Schematic overview of the di↵erent jet con-
stituent features available in the JetClass dataset.
The horizontal line at the bottom represents the
beam axis and the circle on this line represents the
primary vertex (PV).

can lead to the problem that the decay products are
not fully contained in the jet, which can be seen e.g.
in distributions such as the jet mass for top quarks,
where there is a prominent secondary mass peak.
Finally, JetNet focuses solely on the kinematics of
the jet constituents, whereas there is a wealth of ad-
ditional information inside the jets that could also
be modeled, such as trajectory displacement, charge,
and particle ID as illustrated in Figure 1.

In this work, we introduce the first jet cloud
modeling on the much larger dataset of JetClass.
Other than demonstrating that existing techniques
scale well to this new dataset, we also tackle new
challenges introduced by the JetClass dataset, in-

Jet constituents
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FIG. 1. SIC curves for Nsig = 1000 (left) and Nsig = 300 (right). R-Anode with a learnable w almost saturates the performance
of an idealized R-Anode where w is fixed to its true value during training. Both these methods outperform the IAD and Anode.
The supervised classifier sets the upper limit for performance of all these methods, and at larger signal strengths, R-Anode
saturates this upper limit before the IAD does.

FIG. 2. Left: SIC (at FPR = 0.001) vs Nsig (amount of signal injected to data). Right: Total significance achieved (at
FPR=0.001) vs Nsig. Again we see that R-Anode with learnable w matches the idealized R-Anode with w = wtrue, and both
outperform IAD and Anode, across a wide range of signal levels.

training, for di↵erent amounts of injected signal. Then
we present the results for di↵erent fixed values of w for
Nsig = 1000. And finally, we show the results for the case
where we attempt to learn w.

We compare R-Anode to Anode, the IAD, and a
fully supervised classifier. For all figures, unless other-
wise mentioned, the curves show the median value and
68% confidence bands for the results obtained by retrain-
ing the methods on 10 di↵erent datasets described in
Sec. IIIA corresponding to di↵erent randomly-selected
signal injections. Since the upper limit for performance of
the classifier-based data-driven approaches like CWoLA
[11, 12], CATHODE [17], CURTAINS [25], etc. is the
IAD, we omit the explicit comparison to these methods.
The supervised classifier sets the upper bound to per-

formance for all methods on this signal hypothesis. In-
terestingly, as observed in [17, 25, 29], for these signal
injections there is a di↵erence in performance between
the IAD and supervised classifier. This is because the
IAD is not actually fully optimal – it is limited by finite
training statistics and finite model capacity. The truly
optimal AD given by Eq. (1) would be completely equiv-
alent to the fully supervised classifier, since it would be
monotonic with it [17].

A. Idealized version: fixing w = wtrue

We study the performance of R-Anode for di↵er-
ent amounts of signal-injections, in the idealized sce-

Detect anomalies



Conclusions
Generative models have wide range of 
applications for simulation, background, 
estimation and as other surrogates


Recent progress (diffusion/flow matching + 
point clouds) allow modelling many high 
dimensional distributions


Models with tractable likelihood (i.e. 
normalising flow) enable further new 
applications 

Thank you!
https://indico.desy.de/event/38849/


