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The CERN accelerator chain

The CERN accelerator complex
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LHC and other experiments &)

_____

-> The SPS North experimental Area hosts
very interesting and demanding fixed
target experiments: COMPASS, NAG2...

¢ Slow extraction is used to deliver constant
proton and heavy ion flux = 3rd integer slow
extraction

=> |SOLDE takes the largest number of
protons accelerated at CERN

=> The PS serves directly several
experimental facilities, like EAST area and
nToF, but also indirectly via AD/ELENA:
ASACUSA, ATRAP, GBAR... Moy~ O gl <.y
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Motivation

=  Multi-purpose machines need to
efficiently share the time among users
(experiments) and guarantee stable

and reproducible conditions
¢ Classically this is a trade-off to decide upon

-> A possible way to break the balance is
to “predict” the effect of changes in
a very entangled and complicated
system as an accelerator chain

Performance
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https://www.sciencedirect.com/science/article/abs/pii/S0010027718301604

SPS slow extraction reproducibility

-> Hysteresis on the main SPS quadrupoles responsible for extracted
beam quality degradation [1]

¢ Beam based measurements highlighted tune variation

¢ Magnetic measurements on spare quadrupole showed field variation comypatible

with beam observations

Tune variation in the cycle after a configuration change
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https://accelconf.web.cern.ch/ipac2018/papers/tupaf035.pdf

SPS slow extraction reproducibility

-> Hysteresis on the main SPS quadrupoles responsible for extracted
beam quality degradation [1]

¢ Beam based measurements highlighted tune variation

¢ Magnetic measurements on spare quadrupole showed field variation comypatible
with beam observations

MADX simulations from quad and dipole measurements

Tune variation in the cycle after a configuration change
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https://accelconf.web.cern.ch/ipac2018/papers/tupaf035.pdf

Chromaticity and tune settings

B 2

Multi-cycled machines need to adapt to
different beam requirements hence
different parameters

This translate into the need to be able to
quickly change from one set of settings to

others
¢ Like tune, chromaticity

On paper, this could be very simple but in
reality we have eddy-currents, non-linearity
and non-ideality of magnets and power
supplies

How can we produce a model that given
some target beam parameters returns
settings needed for the accelerator
magnets?
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High intensity limitations in the SPS

=> High intensity particle beams

heat up accelerator
components

Other effects, still linked to
HI, lead to vacuum pressure
rise

Kickers are usually the most

sensitive:
¢ Hold high voltage
¢ Yoke directly in vacuum and
exposed to beam usually with
no shielding

In the SPS, the MKP 1077 -
(injection) and the MKDH

(dump) are the most reactive 107 ;
to high intensity beams
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What are we looking for and what we have

=> Correct spill structure by predicting machine magnetic behaviour

¢ \Very accurately predict effect on the beam of available machine settings => easy to
change users on the fly and maintain performance

=> Predict beam induced heating, vacuum behaviour given beam
parameters and status of our systems from beam observations =>
better scheduling and more efficient operation




What are we looking for and what we have

=> Correct spill structure by predicting machine magnetic behaviour
¢ Very accurately predict effect on the beam of available machine settings => easy to
change users on the fly and maintain performance

=> Predict beam induced heating, vacuum behaviour given beam
parameters and status of our systems from beam observations =>
better scheduling and more efficient operation

- The available dataset we have are not enormous

¢ Complicated NN easy to overfit
¢ Physics models available (in many cases) but too slow or not very accurate

=  Working towards exploiting physics knowledge to regularise, build
features, improve NN performance and be able to “extrapolate” to

future or unknown quantities



Physics informed data-driven
models being explored



Physics Informed Neural Networks
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Embedding physics knowledge in NN is becoming very common
Very complete summary of applications [2] (figure taken from [2]) and

the general field of physics informed ML [2.1]
We were looking for a way to extend temperature prediction to very

long time periods and to predict ferrite temperature...

NSE+HE
Veu =0
U + (usV)u =-Vp + (Re)*V?u + (Ri)9
9,9 + (u*V)9 = (Pe)1V?8 ~1300 papers

NSE
Veu =0
U + (ueV)u = -Vp + (Re)V?u

du + Bou =0

SE
igh + 0.59,,h + [h|2h = 0 ?
~30 papers 14


https://arxiv.org/pdf/2201.05624.pdf
https://arxiv.org/pdf/2201.05624.pdf
https://www.nature.com/articles/s42254-021-00314-5

Physics Informed Neural Networks

First proposed to solve nonlinear PDE [3] (all plots from [3])
Basically using boundary and initial conditions values, NN can
interpolate the whole system dynamics “knowing” the PDE that

describe the system

¢ At the same time though, one can just use a physics loss term...it doesn’t have to be a
PDE system
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https://www-sciencedirect-com.ezproxy.cern.ch/science/article/pii/S0021999118307125
https://www-sciencedirect-com.ezproxy.cern.ch/science/article/pii/S0021999118307125

Physics Informed Neural Networks

=> DNN cannot extrapolate beyond the
training domain..which is exactly

what we would expect from
interpolation function

min(Loss) => Loss = Mean (datd - prediction)?

Source: [ﬁ]_

Training step: 10

/\ /\ - Exact solution

= Neural network prediction
Training data

16



https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/

Physics Informed Neural Networks

=> DNN cannot extrapolate beyond the
training domain..which is exactly

what we would expect from
interpolation function

N
L= (ule) — la;,0))
Source: [ﬂ

Training step: 10

/\ /\ - Exact solution

= Neural network prediction
Training data
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https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/

Physics Informed Neural Networks

-> DNN cannot extrapolate beyond the

Training a

neural network
Ty

............

training domain..which is exactly NN 0)

what we would expect from eﬁégf& Lo
. . . =4 '\‘v‘Y'-‘ IV " #I e
interpolation function )‘\? ey

N
L= (ula) = (i, )

-> Go beyond data domain => more
information needed;

= _:Compare to

min(Loss) => Loss = Mean (datd - prediction)>
+  Additional_info(prediction) AN
L= I/NZ(u(a;,-) — (x,0))? ' \/ e
Lo = 1/1\12(% = g—’;‘f
L3 =u(x,t =0)— f(x) Etot = aﬁl + 5£2 + ’Y£3 + 77£4

£4 = ’&(1‘ = O.t) — Ug

training data

Source: [ﬁ]_

Training step: 150

~——— Exact solution

== Neural network prediction
Training data
Physics loss training locations
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https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/

Physics Informed DeepONets [5]

= Usually we have to deal with
forced/controlled systems

Neural Network for
Operator Approximation

. . & e’
- We are not learning a simple ulty] —>
. U[tl] — O
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: RO — s(t)
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. ) 6
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https://arxiv.org/abs/2103.10974
https://medium.com/towards-data-science/operator-learning-via-physics-informed-deeponet-lets-implement-it-from-scratch-6659f3179887

Neural ODE [7]

- Another possible way is u(1) [ %O v ol O%o} (1)
to use the known ‘
problem statement as
PDE and use a Neural Z(t)
solver (classic ODE
solvers but using NN as ] ]

Z(t)

functions) y(t)
o o
¢ Applications already in u(t)
i . 7 ”
. .mdustry./ [§1. Q = j(t+ N)
(t) y

NODE solver

-> Similar principle of [u(t + N ) (4
Deep ONet but more “
suitable for real
applications



https://www.nature.com/articles/s41746-023-00926-4
https://arxiv.org/abs/1806.07366

Physics in ML models

=> The pattern is always the same:
¢ Make the model conceptually similar to

the underlying physics
¢ Addaterm tothe loss function to

satisfy physics constraints
- We are basically adding additional

information via physics laws and
not directly data

Observational bias

®
\
|
|

A\

Symmetry

Inductive bias
Physics-informed machine learning

Conservation laws

Learning bias

Dynamics

[21]


https://www.nature.com/articles/s42254-021-00314-5

Some applications



Quadrupoles hysteresis prediction

-> First attempt using simple LSTM (as done for kicker temperature

prediction)
=> Very poor results! Dataset available not large enough and complicated
dynamics
—— Ground truth
o 31 — Prediction 0.86600
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w '—m‘ 2 - [_‘
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Hysteresis modelling

@)

e 3

e 2
e 2

Hysteresis is rather common in physics and many other fields
(chemistry, biology, economics...)

Modelling is rather challenging: main models Preisach and Bouc-Wen
INn [9], PINN applied to hysteresis modelling of behaviour of structures

under seismic excitation
¢ Thiswas our inspiration => very similar problem but different system

Here is the model used in [9]:

PhyLSTM? Network

24


https://arxiv.org/pdf/2002.10253.pdf
https://arxiv.org/pdf/2002.10253.pdf

PhyLSTM for SPS quadrupole hysteresis

=> A generic hysteretic model can
be written as [10]:

ay(t) + b(y,y) +r(y,y, y(1)) = I'x(t) y+g9g=r_x

= Using input x ={l, dl/dt} and
output y = {B, dB/dt}, we wrote
our model and loss:

L1 = MSE(z1(01) — y1) + MSE(22(01) — ¥2)

Lo = MSE(z1(01) — z2(01))

L3 = MSE(22(61) + MLP(9(1.,62), X1))

Ly = MSE(r(61,63) —2z3(61));r = f(®); ® = {Azp, r}

=

Ltot =Ly +BLy +YL3 + MLy

{212, 23}
®d LSTM3 7

HE 5 f\
o Ll\

MLP g+rx \ -

z=4{B, B r}

y ={B, B}

LSTM2 9

25


https://arxiv.org/pdf/2002.10253.pdf

PINN for SPS quadrupole hysteresis

Normalised field derivative

22"

Encouraging results, but very hard to train
Evaluating pure data-driven models

Just proof of concept: we now have Anton (PhD
in CSS/DSB) actively working on this 4

I Work in progress!
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NNs for SPS main dipole hysteresis prediction

SPS main dipole field prediction vs measured, for fixed target cycles

= PhyLSTM architecture trialed

Flat top prediction and ground truth

¢ Sub-gauss prediction accuracy very difficult to T easured i:i; ey
reach (~1e-5T) for flat bottosm g e v
¢ Hysteresis not perfectly captured even with e |1 614 o
additional data (1h varied operational cycles) 1813 e
¢ Bouc-Wen model used for physics loss does 2%
technically not account for rate-dependent effects S
(eddy currents) 150
=> SOTA generic time series models like 128
. 1.00 g
Temporal Fusion Transformer
¢ Work better, but are '
e \Very expensive to train e
e Requires vast amounts of data 028
(] Not guaranteed to generalize ' 10000 20000 : 40000 50000 60000 "
- Future plans: PINNs o
¢ Augment existing architectures like TSMixer with B 7o Prediction 1 g 06238

physics loss
¢ Choice of physics model highly important;
Bouc-Wen model might not be sufficient Flat bottom prediction and ground truth

F0.06232

- 0.06226

[A. Lu]



Tune and chromaticity settings

. . kQF\
- We can measure tune and record all machine settings X Y
oD easured
¢ Also save momentum offset
= Forcing (via loss function) the relationship between tune and Ksr1 (0)
chroma for given momentum offset => get chroma along the kspi 0y,
cycle Flkge, | = o
-  We could then invert this model to be able to control tune and Kspo Q"I
chroma on demand => normalizing flows? kg \ =V
B Estimated
0.181 _ Qho + Ap/pQ’y - predicted B
0.16 { —— Qpo - predicted /
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—2.5i7
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# datapoints

Y

2 2
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LSTM for temperature prediction

= Two LSTM layers with 170 units with dropout layer with 50%

probability, linear layer for the output prediction
¢ The loss function is calculated comparing the whole output sequence.

Y = NN(X); X € t(—40,0]; Y € t[1, 30].
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Adding physics information

-> Bridge from pure data-driven model and pure physics model to PINN

-> Solve heat equation with forcing term from beam-based measurements:

¢ Power loss from beam induced heating
o0

AW = (feloNb)> 3 (INkwo) PR [Zj(kwo))) L7 AW

k=—00 dt FcooICth
¢ Heat propagation inside the kicker and to temperature sensor:

T  k 9T i AW(x,t)
at  pC, Ox? pCp
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80
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Time
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VAE for BTVD image reconstruction

-> Special case of VAE => Supervised [Variational] Auto Encoder (idea
taken from [11])

—_—— ———
— ——
—_—— -~

Generative parameters / BTVDD Image

[ [c] 1 [Slmulatlons ]d;>

L. -0 — §
ha
! - O h2
“Physics” loss
Input Code Output

Encoder Decoder 31


https://arxiv.org/pdf/2002.00097.pdf

BTVDD image reconstruction in SPS

cﬁw
\

N7

9 I_HC beam dump Status él an(DI—i ) nMKDV " de;} ??tchLen%th {IEJmBa':ChieS k;a_tchs;(jing l-en.ergy 1k)_ean’1_t¥”;e
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to simulate different filling “}/ / / A 4 a'{! e 1/ %
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Ground truth Ground truth Ground truth

¢ Number for batches very difficult for
many single bunches

& Dbatch spacing very difficult for single
bunches

Ground truth

Ground truth

Ground truth

Ground truth

Generated

Ground truth

Ground truth
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BTVDD image reconstruction in LHC
Training nMKBV deltaT batchLength numBatches  batchSpacing energy
- LHC beam dump status A T '
. . £ 05 0.5 0a AL 0541 4 0.5 :.'y'.:?,";
reconstruction from beam images P ] oy | wk® |l .
-> Here the most complicated part is S L e i
A i Lo Test nMKBV deltaT batchLength numBatches energy
to simulate different filling RO B e
patterns Eo.s- oAs-. :: :'// :Z :'?/,( : :Z':/?‘; ‘
¢ Number for batches very difficult for = L ) I ¢ T % ; i

many single bunches
& Dbatch spacing very difficult for single

bunches
Ground Truth 1image 100 image 200 image 300 image 400 image 500 image 600 image 700 image 800 image 900
0 0 0 0 0 0 0 0 0 0
100 - 100 . 100 100 100 100 100 - 100 - 100 100
0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100
Reconstruction
0 0 0 0 0 0 0 0 0 0
100 - 100 - 100 100 100 100 100 - 100 - 100 100
0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100
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Models in operation



SBDS anomaly detection

Problem:

-> Classify BTV images as F
good/anomaly

- Unlabeled dataset

-> Most beam dumps are ok, i.e.
dataset is biased towards good
images.

[
I
|

A ‘”M

Solution: Autoencoder:

En=™ | ~oED

10!

-> Reconstruction error:

E=(1- G)Cll»‘(wgood) + €ew(@had)

= High reconstruction error likely
means an anomalous dump



Summary and prediction

-> Testing prediction on different scenarios

=  Summary:

*
*

*

Model results very promising
Model ready and used in CCC to
make estimation of time left for Hi

beams

Model not capable to extrapolate
=> Need to include physics in the

model...

Temperature / °C
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Summary and outlook

= We are working towards more automated and even more predictable
machine operation

= Dealing with relatively small dataset and physics process partially

known = Physics Informed machine learning

¢ Rather simple to introduce physics awareness
¢ Difficult to train

=> First results look encouraging
¢ In many cases still at PoC stage
Model deployed only data driven so far
Looking at other possible applications for PINN:

¢ Optimisation of septa design via PINN-surrogate
¢ Replacement for PDE solvers for mechanical design or design optimisation

vl
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MKDH pressure prediction

- We can transform the problem to
predict the probability of a vacuum
spike give beam parameters

=> Pure Bayesian probabilistic model: used
pyMC to build a model that respect
physics behind vacuum response

-> Such a model can also show us if the LR p— e
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PhyLSTM for SPS quadrupole hysteresis

- After many attempts, we managed to train 105.2
successfully one PhyLSTM for hysteresis % 104 ]
prediction s
¢ Not fully optimised yet -
¢ Not enough data to make a proper general model for 0 500 1000 1500 2000
SPS quadrupoles Epoihs

¢ Hyperparameters not tuned yet

PhyLSTM?3

(relu): LeakyReLU(negative-slope=0.01)

(Llstm0): LSTM(1, 350, num-Llayers=3, batch-first=True, dropout=0.2)
(fc0): Linear(in-features=350, out-features=175, bias=True)

(fc01): Linear(in-features=175, out-features=3, bias=True)

(gradient): GradientTorch()

(Lstm): LSTM(3, 350, num-Llayers=3, batch-first=True, dropout=0.2)
(fcl): Linear(in-features=350, out-features=175, bias=True)

(fc11): Linear(in-features=175, out-features=1, bias=True)

(Llstm3): LSTM(2, 350, num-layers=3, batch-first=True, dropout=0.2)
(fc2): Linear(in-features=350, out-features=175, bias=True)

(fc21): Linear(in-features=175, out-features=1, bias=True)

(g-plus-x): Sequential(

(0): Linear(in-features=2, out-features=350, bias=True)

(1): ReLU()

(2): Linear(in-features=350, out-features=1, bias=True))




LSTM model for MKP: results

- Trained model repreduced training and

validation data set almost perfectly

¢ Trained on max sequence of 30 steps and
capable to extend to ~100 with reasonable
errors

¢ Errorinthe order of a couple of degrees on test
dataset

-> Bayesian version looking also promising
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Prediction for 2021 scrubbing

-

Temperature / °C

65

55 A

50 4

45 A

40 A

35 4

30 +

Testing the prediction on 10/14h scrubbing, with
288x1.5e11 p at 100% availability..we should
reach the 60°C in the first 2 runs of 10h!!

Here we really see this as the model is not
capable to extrapolate...

Both models saturates at 60°C (since no data
beyond this in our training set) and cannot
predict correctly cooldown after 57°C as data on
that either...

le5

—-1 =3 -_— E—1 k=3 =3 o
- 2.5
Y amd
F20 w
,
(=7
S i fikired
o
i
Case 4 10, b
W
- 0.5
.——-—----0.0
T T T T )}
0 500 1000 1500 2000

time / S5m

Inputs ci1 c2 c3 c4

ly, ns(€11) 1.5 1.5 1.5 1.5

N, (#) 288 288 216 144
Av 1.0 1.0 1.0 1.0
b,(s: BQM) 5e-9 5e-9 5e-9 5e-9

|, «(e11/cycle) 0.0 0.0 0.0 0.0
T,(°C) 40 40 40 40

T, (min) 5 5 5 5
Tcycle(s) 17 17 17 17
Tsc(8) 40.8 40.8 40.8 40.8
T,.->[h] [10]* 8 [6]*8 8] *7 [10]1*7
T >[h] [14]* 8 [18]* 8 [16]*7 [14]* 7




Latent space scan

- With this architecture, we can
generate BTVDD images from
generative parameters (number
of Kickers...) using the decoder
by itself

-> Orthogonal scan possible
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Latent space scan

- With this architecture, we can
generate BTVDD images from
generative parameters (number
of Kickers...) using the decoder
by itself

-> Orthogonal scan possible
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Deploy on real data

30.0 ° v L
- Of course the final goal is to predict s ..
25.0 4 o
real images... o . . .
- Using both generative parameters Z 200 .t Wong'e s "u.' |
~ 7 P &%;v,mm\w P,
and image reconstruction score, -
15.0 +
anomalous case found! PSNR = —1010g10€]ggE
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