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Introduction



The CERN accelerator chain
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➔ The SPS North experimental Area hosts 
very interesting and demanding fixed 
target experiments: COMPASS, NA62…

◆ Slow extraction is used to deliver constant 
proton and heavy ion flux ⇒ 3rd integer slow 
extraction

➔ ISOLDE takes the largest number of 
protons accelerated at CERN

➔ The PS serves directly several 
experimental facilities, like EAST area and 
nToF, but also indirectly via AD/ELENA: 
ASACUSA, ATRAP, GBAR… 

➔ LHC towards HL-LHC ⇒ high integrated 
Lumi!

LHC and other experiments
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➔ Multi-purpose machines need to 
efficiently share the time among users 
(experiments) and guarantee stable 
and reproducible conditions 

◆ Classically this is a trade-off to decide upon

➔ A possible way to break the balance is 
to “predict” the effect of changes in 
a very entangled and complicated 
system as an accelerator chain

Motivation

Flexibility Stability

[source]

https://www.sciencedirect.com/science/article/abs/pii/S0010027718301604


➔ Hysteresis on the main SPS quadrupoles responsible for extracted 
beam quality degradation [1]

◆ Beam based measurements highlighted tune variation 
◆ Magnetic measurements on spare quadrupole showed field variation compatible 

with beam observations

SPS slow extraction reproducibility

7

Tune variation in the cycle after a configuration change

New 
config

Stable field

Transient

https://accelconf.web.cern.ch/ipac2018/papers/tupaf035.pdf
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MADX simulations from quad and dipole measurements

https://accelconf.web.cern.ch/ipac2018/papers/tupaf035.pdf


➔ Multi-cycled machines need to adapt to 
different beam requirements hence 
different parameters 

➔ This translate into the need to be able to 
quickly change from one set of settings to 
others 

◆ Like tune, chromaticity 
➔ On paper, this could be very simple but  in 

reality we have eddy-currents, non-linearity 
and non-ideality of magnets and power 
supplies 

➔ How can we produce a model that given 
some target beam parameters returns 
settings needed for the accelerator 
magnets? 

Chromaticity and tune settings



➔ High intensity particle beams 
heat up accelerator 
components 

➔ Other effects, still linked to 
HI, lead to vacuum pressure 
rise 

➔ Kickers are usually the most 
sensitive:

◆ Hold high voltage
◆ Yoke directly in vacuum and 

exposed to beam usually with 
no shielding

➔ In the SPS, the MKP 
(injection) and the MKDH 
(dump) are the most reactive 
to high intensity beams 

High intensity limitations in the SPS



What are we looking for and what we have 

➔ Correct spill structure by predicting machine magnetic behaviour
◆ Very accurately predict effect on the beam of available machine settings => easy to 

change users on the fly and maintain performance 

➔ Predict beam induced heating, vacuum behaviour given beam 
parameters and status of our systems from beam observations => 
better scheduling and more efficient operation



➔ Correct spill structure by predicting machine magnetic behaviour
◆ Very accurately predict effect on the beam of available machine settings => easy to 

change users on the fly and maintain performance 

➔ Predict beam induced heating, vacuum behaviour given beam 
parameters and status of our systems from beam observations => 
better scheduling and more efficient operation

➔ The available dataset we have are not enormous
◆ Complicated NN easy to overfit
◆ Physics models available (in many cases) but too slow or not very accurate 

➔ Working towards exploiting physics knowledge to regularise, build 
features, improve NN performance and be able to “extrapolate” to 
future or unknown quantities 

What are we looking for and what we have 



Physics informed data-driven 
models being explored



➔ Embedding physics knowledge in NN is becoming very common
➔ Very complete summary of applications [2] (figure taken from [2]) and 

the general field of physics informed ML [2.1]
➔ We were looking for a way to extend temperature prediction to very 

long time periods and to predict ferrite temperature…

Physics Informed Neural Networks
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https://arxiv.org/pdf/2201.05624.pdf
https://arxiv.org/pdf/2201.05624.pdf
https://www.nature.com/articles/s42254-021-00314-5


➔ First proposed to solve nonlinear PDE [3] (all plots from [3])
➔ Basically using boundary and initial conditions values, NN can 

interpolate the whole system dynamics “knowing” the PDE that 
describe the system

◆ At the same time though, one can just use a physics loss term…it doesn’t have to be a 
PDE system

Physics Informed Neural Networks
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https://www-sciencedirect-com.ezproxy.cern.ch/science/article/pii/S0021999118307125
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Physics Informed Neural Networks

Source: [4]

➔ DNN cannot extrapolate beyond the 
training domain…which is exactly 
what we would expect from 
interpolation function

min(Loss) => Loss = Mean(data - prediction)2
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https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/
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➔ DNN cannot extrapolate beyond the 
training domain…which is exactly 
what we would expect from 
interpolation function

➔ Go beyond data domain => more 
information needed:

Physics Informed Neural Networks

Source: [4]

min(Loss) => Loss = Mean(data - prediction)2 
+ Additional_info(prediction)
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➔ Usually we have to deal with 
forced/controlled systems

➔ We are not learning a simple 
function anymore but an operator:

➔ In many cases, long 
memory/inertia 

➔ Need to include “all” past
history

Physics Informed DeepONets [5]

[6]

https://arxiv.org/abs/2103.10974
https://medium.com/towards-data-science/operator-learning-via-physics-informed-deeponet-lets-implement-it-from-scratch-6659f3179887


➔ Another possible way is 
to use the known 
problem statement as 
PDE and use a Neural 
solver (classic ODE 
solvers but using NN as 
functions)

◆ Applications already in 
industry [8]

➔ Similar principle of 
Deep ONet but more 
suitable for real 
applications

Neural ODE [7]

…

NODE solver

https://www.nature.com/articles/s41746-023-00926-4
https://arxiv.org/abs/1806.07366


➔ The pattern is always the same: 
◆ Make the model conceptually similar to 

the underlying physics 
◆ Add a term to the loss function to 

satisfy physics constraints 

➔ We are basically adding additional 
information via physics laws and 
not directly data

Physics in ML models

[2.1]

https://www.nature.com/articles/s42254-021-00314-5


Some applications



➔ First attempt using simple LSTM (as done for kicker temperature 
prediction)

➔ Very poor results! Dataset available not large enough and complicated 
dynamics

Quadrupoles hysteresis prediction 



➔ Hysteresis is rather common in physics and many other fields 
(chemistry, biology, economics…)

➔ Modelling is rather challenging: main models Preisach and Bouc-Wen
➔ In [9], PINN applied to hysteresis modelling of behaviour of structures 

under seismic excitation 
◆ This was our inspiration => very similar problem but different system

➔ Here is the model used in [9]:

Hysteresis modelling
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https://arxiv.org/pdf/2002.10253.pdf
https://arxiv.org/pdf/2002.10253.pdf


➔ A generic hysteretic model can 
be written as [10]:

➔ Using input x = {I, dI/dt} and 
output y = {B, dB/dt}, we wrote 
our model and loss:

PhyLSTM for SPS quadrupole hysteresis 
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https://arxiv.org/pdf/2002.10253.pdf


➔ Encouraging results, but very hard to train
➔ Evaluating pure data-driven models 
➔ Just proof of concept: we now have Anton (PhD 

in CSS/DSB) actively working on this

PINN for SPS quadrupole hysteresis
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➔ PhyLSTM architecture trialed
◆ Sub-gauss prediction accuracy very difficult to 

reach (~ 1e-5 T) for flat bottom
◆ Hysteresis not perfectly captured even with 

additional data (1h varied operational cycles)
◆ Bouc-Wen model used for physics loss does 

technically not account for rate-dependent effects 
(eddy currents)

➔ SOTA generic time series models like 
Temporal Fusion Transformer

◆ Work better, but are 
● Very expensive to train
● Requires vast amounts of data
● Not guaranteed to generalize

➔ Future plans: PINNs
◆ Augment existing architectures like TSMixer with 

physics loss
◆ Choice of physics model highly important; 

Bouc-Wen model might not be sufficient

NNs for SPS main dipole hysteresis prediction 

[A. Lu]



➔ We can measure tune and record all machine settings 
◆ Also save momentum offset

➔ Forcing (via loss function) the relationship between tune and 
chroma for given momentum offset => get chroma along the 
cycle 

➔ We could then invert this model to be able to control tune and 
chroma on demand => normalizing flows?

Tune and chromaticity settings

Measured

Estimated



➔ Two LSTM layers with 170 units with dropout layer with 50% 
probability, linear layer for the output prediction

◆ The loss function is calculated comparing the whole output sequence.

LSTM for temperature prediction



➔ Bridge from pure data-driven model and pure physics model to PINN
➔ Solve heat equation with forcing term from beam-based measurements:

◆ Power loss from beam induced heating

◆ Heat propagation inside the kicker and to temperature sensor:

Adding physics information

Never-seen forcing term



➔ Special case of VAE => Supervised [Variational] Auto Encoder (idea 
taken from [11])

VAE for BTVD image reconstruction

Li (θ,ϕ)=−Ez∼qθ(z∣xi)[logϕ(xi∣z)]+ wKL KL(qθ(z∣xi), p(z)) + wg MSE(c, Z) 

[c] Simulations [X] [Z]E D [X’]

Generative parameters BTVDD image

SAE

=0

!=0
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“Physics” loss

https://arxiv.org/pdf/2002.00097.pdf


➔ LHC beam dump status 
reconstruction from beam images

➔ Here the most complicated part is 
to simulate different filling 
patterns 

◆ Number for batches very difficult for 
many single bunches

◆ batch spacing very difficult for single 
bunches 

BTVDD image reconstruction in SPS
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BTVDD image reconstruction in LHC
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➔ LHC beam dump status 
reconstruction from beam images

➔ Here the most complicated part is 
to simulate different filling 
patterns 

◆ Number for batches very difficult for 
many single bunches

◆ batch spacing very difficult for single 
bunches 



Models in operation



Problem:

➔ Classify BTV images as 
good/anomaly 

➔ Unlabeled dataset
➔ Most beam dumps are ok, i.e. 

dataset is biased towards good 
images. 

Solution: Autoencoder:

➔ Reconstruction error:

➔ High reconstruction error likely 
means an anomalous dump

SBDS anomaly detection

[F. Hunh]



Summary and prediction
➔ Testing prediction on different scenarios 
➔ Summary:

◆ Model results very promising 
◆ Model ready and used in CCC to 

make estimation of time left for HI 
beams

◆ Model not capable to extrapolate
➔ Need to include physics in the 

model…

K. Li
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➔ We are working towards more automated and even more predictable 
machine operation 

➔ Dealing with relatively small dataset and physics process partially 
known ⇒ Physics Informed machine learning 

◆ Rather simple to introduce physics awareness 
◆ Difficult to train

➔ First results look encouraging
◆ In many cases still at PoC stage

➔ Model deployed only data driven so far
➔ Looking at other possible applications for PINN:

◆ Optimisation of septa design via PINN-surrogate
◆ Replacement for PDE solvers for mechanical design or design optimisation 

Summary and outlook



Thanks!



➔ We can transform the problem to 
predict the probability of a vacuum 
spike give beam parameters 

➔ Pure Bayesian probabilistic model: used 
pyMC to build a model that respect 
physics behind vacuum response 

➔ Such a model can also show us if the 
element is showing conditioning with 
time 

MKDH pressure prediction

Number of batches

48 bunches 96 bunches 144 bunches 192 bunches 240 bunches



➔ After many attempts, we managed to train 
successfully one PhyLSTM for hysteresis 
prediction 

◆ Not fully optimised yet
◆ Not enough data to make a proper general model for 

SPS quadrupoles
◆ Hyperparameters not tuned yet

PhyLSTM for SPS quadrupole hysteresis `
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LSTM model for MKP: results
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➔ Trained model repreduced training and 
validation data set almost perfectly

◆ Trained on max sequence of 30 steps and 
capable to extend to ~100 with reasonable 
errors

◆ Error in the order of a couple of degrees on test 
dataset

➔ Bayesian version looking also promising



➔ Testing the prediction on 10/14h scrubbing, with 
288x1.5e11 p at 100% availability...we should 
reach the 60°C in the first 2 runs of 10h!!

➔ Here we really see this as the model is not 
capable to extrapolate…

➔ Both models saturates at 60°C (since no data 
beyond this in our training set) and cannot 
predict correctly cooldown after 57°C as data on 
that either...

Prediction for 2021 scrubbing
Inputs c1 c2 c3 c4

Ib, ns(e11) 1.5 1.5 1.5 1.5

Nb(#) 288 288 216 144

Av 1.0 1.0 1.0 1.0

bl(s: BQM) 5e-9 5e-9 5e-9 5e-9

Ioff(e11/cycle) 0.0 0.0 0.0 0.0

T0(°C) 40 40 40 40

Tbin(min) 5 5 5 5

Tcycle(s) 17 17 17 17

TSC(s) 40.8 40.8 40.8 40.8

Ton->[h] [10] * 8 [6] * 8 [8] * 7 [10] * 7

Toff->[h] [14] * 8 [18] * 8 [16] * 7 [14] * 7

Case 4



➔ With this architecture, we can 
generate BTVDD images from 
generative parameters (number 
of kickers…) using the decoder 
by itself

➔ Orthogonal scan possible 

Latent space scan

MKBH

MKBV

deltaT

Zi,j
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➔ With this architecture, we can 
generate BTVDD images from 
generative parameters (number 
of kickers…) using the decoder 
by itself

➔ Orthogonal scan possible 

Latent space scan

MKBH

MKBV

deltaT

Zi,j
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➔ Of course the final goal is to predict 
real images…

➔ Using both generative parameters 
and image reconstruction score, 
anomalous case found!

Deploy on real data
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