

Improving data-driven model predictions using physics in the CERN accelerator complex

F. M. Velotti, V. Kain, F. Huhn, A. Lu Thanks to M. Shenk, M. Barnes, B. Goddard, K. Li And to the [ML community forum](https://indico.cern.ch/category/14287/)

Outline

- \rightarrow Introduction and motivation
- → Physics-informed data driven model being explored
- ➔ Some applications
- ➔ Models in operation
- \rightarrow Conclusions

Introduction

The CERN accelerator chain

LHC and other experiments

- \rightarrow The SPS North experimental Area hosts very interesting and demanding fixed target experiments: COMPASS, NA62…
	- **◆ Slow extraction is used to deliver constant proton and heavy ion flux** ⇒ **3rd integer slow extraction**
- → ISOLDE takes the largest number of protons accelerated at CERN
- \rightarrow The PS serves directly several experimental facilities, like EAST area and nToF, but also indirectly via AD/ELENA: ASACUSA, ATRAP, GBAR…
- ➔ **LHC towards HL-LHC** ⇒ **high integrated Lumi!**

Motivation

- \rightarrow Multi-purpose machines need to efficiently share the time among users (experiments) and guarantee stable and reproducible conditions
	- Classically this is a trade-off to decide upon
- \rightarrow A possible way to break the balance is to **"predict" the effect of changes** in a very entangled and complicated system as an accelerator chain

SPS slow extraction reproducibility

-
- → Hysteresis on the main SPS quadrupoles responsible for extracted beam quality degradation [\[1\]](https://accelconf.web.cern.ch/ipac2018/papers/tupaf035.pdf)
	- Beam based measurements highlighted tune variation
	- ◆ Magnetic measurements on spare quadrupole showed field variation compatible with beam observations

Tune variation in the cycle after a configuration change

SPS slow extraction reproducibility

-
- ➔ Hysteresis on the main SPS quadrupoles responsible for extracted beam quality degradation [\[1\]](https://accelconf.web.cern.ch/ipac2018/papers/tupaf035.pdf)
	- Beam based measurements highlighted tune variation
	- ◆ Magnetic measurements on spare quadrupole showed field variation compatible with beam observations

Tune variation in the cycle after a configuration change

MADX simulations from quad and dipole measurements

Chromaticity and tune settings

- ➔ Multi-cycled machines need to adapt to different beam requirements hence different parameters
- \rightarrow This translate into the need to be able to quickly change from one set of settings to others
	- Like tune, chromaticity
- \rightarrow On paper, this could be very simple but in reality we have eddy-currents, non-linearity and non-ideality of magnets and power supplies
- \rightarrow How can we produce a model that given some target beam parameters returns settings needed for the accelerator magnets?

High intensity limitations in the SPS

- \rightarrow High intensity particle beams heat up accelerator components
- → Other effects, still linked to HI, lead to vacuum pressure rise
- \rightarrow Kickers are usually the most sensitive:
	- **Hold high voltage**
	- Yoke directly in vacuum and exposed to beam usually with no shielding
- \rightarrow In the SPS, the MKP (injection) and the MKDH (dump) are the most reactive to high intensity beams

What are we looking for and what we have

- \rightarrow Correct spill structure by predicting machine magnetic behaviour
	- ◆ Very accurately predict effect on the beam of available machine settings => easy to change users on the fly and maintain performance
- \rightarrow Predict beam induced heating, vacuum behaviour given beam parameters and status of our systems from beam observations => better scheduling and more efficient operation

What are we looking for and what we have

- ➔ Correct spill structure by predicting machine magnetic behaviour
	- ◆ Very accurately predict effect on the beam of available machine settings => easy to change users on the fly and maintain performance
- ➔ Predict beam induced heating, vacuum behaviour given beam parameters and status of our systems from beam observations => better scheduling and more efficient operation

- \rightarrow The available dataset we have are not enormous
	- Complicated NN easy to overfit
	- Physics models available (in many cases) but too slow or not very accurate
- ➔ Working towards exploiting physics knowledge to regularise, build features, improve NN performance and be able to "extrapolate" to future or unknown quantities

Physics informed data-driven models being explored

- \rightarrow Embedding physics knowledge in NN is becoming very common
- ➔ Very complete summary of applications [\[2\]](https://arxiv.org/pdf/2201.05624.pdf) (figure taken from [\[2\]\)](https://arxiv.org/pdf/2201.05624.pdf) and the general field of physics informed ML [\[2.1\]](https://www.nature.com/articles/s42254-021-00314-5)
- → We were looking for a way to extend temperature prediction to very long time periods and to predict ferrite temperature…

- → First proposed to solve nonlinear PDE [\[3\]](https://www-sciencedirect-com.ezproxy.cern.ch/science/article/pii/S0021999118307125) (all plots from [\[3\]\)](https://www-sciencedirect-com.ezproxy.cern.ch/science/article/pii/S0021999118307125)
- ➔ Basically using boundary and initial conditions values, NN can interpolate the whole system dynamics "knowing" the PDE that describe the system
	- ◆ At the same time though, one can just use a physics loss term...it doesn't have to be a PDE system

→ DNN cannot extrapolate beyond the training domain…which is exactly what we would expect from interpolation function

 $min(Loss)$ => $Loss$ = Mean(data - prediction)²

Source: [\[4\]](https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/)

 \rightarrow DNN cannot extrapolate beyond the training domain…which is exactly what we would expect from interpolation function

$$
\mathcal{L} = \sum_{i}^{N} (u(x_i) - \hat{u}(x_i, \theta))^2
$$

 \rightarrow DNN cannot extrapolate beyond the training domain…which is exactly what we would expect from interpolation function

 $\mathcal{L} = \sum_i (u(x_i) - \hat{u}(x_i, \theta))^2$

Go beyond data domain => more information needed:

 $\mathcal{L}_4 = \hat{u}(x=0,t) - u_0$

$$
\min(\text{Loss}) \Rightarrow \text{Loss} = \text{Mean}(\text{data - prediction})^2
$$
\n
$$
+ \text{ Additional_info}(\text{prediction})
$$
\n
$$
c_1 = 1/N \sum_{i}^{N} (u(x_i) - \hat{u}(x_i, \theta))^2
$$
\n
$$
c_2 = 1/M \sum_{j}^{M} (\frac{\partial^2 \hat{u}}{\partial x^2} - \frac{\partial \hat{u}}{\partial t})^2
$$
\n
$$
c_3 = \hat{u}(x, t = 0) - f(x)
$$
\n
$$
\mathcal{L}_{tot} = \alpha \mathcal{L}_1 + \beta \mathcal{L}_2 + \gamma \mathcal{L}_3 + \eta \mathcal{L}_4
$$

Source: [\[4\]](https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/)

Physics Informed DeepONets [\[5\]](https://arxiv.org/abs/2103.10974)

- \rightarrow Usually we have to deal with forced/controlled systems
- \rightarrow We are not learning a simple function anymore but an operator: $G(u(t), t) = s(u(t))$
- \rightarrow In many cases, long memory/inertia
- ➔ Need to include "all" past history

Neural ODE [\[7\]](https://arxiv.org/abs/1806.07366)

- \rightarrow Another possible way is to use the known problem statement as PDE and use a Neural solver (classic ODE solvers but using NN as functions)
	- Applications already in industry [\[8\]](https://www.nature.com/articles/s41746-023-00926-4)
- \rightarrow Similar principle of Deep ONet but more suitable for real applications

Physics in ML models

- \rightarrow The pattern is always the same:
	- ◆ Make the model conceptually similar to the underlying physics
	- Add a term to the loss function to satisfy physics constraints
- ➔ We are basically adding additional information via physics laws and not directly data

[\[2.1\]](https://www.nature.com/articles/s42254-021-00314-5)

Some applications

Quadrupoles hysteresis prediction

- ➔ First attempt using simple LSTM (as done for kicker temperature prediction)
- ➔ Very poor results! Dataset available not large enough and complicated dynamics

- ➔ Hysteresis is rather common in physics and many other fields (chemistry, biology, economics…)
- ➔ Modelling is rather challenging: main models Preisach and Bouc-Wen
- → In [\[9\]](https://arxiv.org/pdf/2002.10253.pdf), PINN applied to hysteresis modelling of behaviour of structures under seismic excitation
	- This was our inspiration \Rightarrow very similar problem but different system
- \rightarrow Here is the model used in [\[9\]:](https://arxiv.org/pdf/2002.10253.pdf)

PhyLSTM for SPS quadrupole hysteresis

➔ A generic hysteretic model can be written as [\[10\]:](https://arxiv.org/pdf/2002.10253.pdf)

 $a\ddot{y}(t) + b(y, \dot{y}) + r(y, \dot{y}, y(\tau)) = \Gamma x(t)$ $\ddot{y} + g = \Gamma x$

Using input $x = \{I, dI/dt\}$ and output $y = {B, dB/dt}$, we wrote our model and loss:

$$
\mathcal{L}_1 = MSE(z_1(\theta_1) - y_1) + MSE(z_2(\theta_1) - y_2)
$$
\n
$$
\mathcal{L}_2 = MSE(\dot{z}_1(\theta_1) - z_2(\theta_1))
$$
\n
$$
\mathcal{L}_3 = MSE(\dot{z}_2(\theta_1) + MLP(g(\theta_1, \theta_2), x_1))
$$
\n
$$
\mathcal{L}_4 = MSE(\dot{r}(\theta_1, \theta_3) - \dot{z}_3(\theta_1)); \dot{r} = f(\Phi); \Phi = \{\Delta z_2, r\}
$$

$$
\mathcal{L}_{tot} = \alpha \mathcal{L}_1 + \beta \mathcal{L}_2 + \gamma \mathcal{L}_3 + \eta \mathcal{L}_4
$$

PINN for SPS quadrupole hysteresis

NNs for SPS main dipole hysteresis prediction

- ➔ PhyLSTM architecture trialed
	- Sub-gauss prediction accuracy very difficult to reach (~ 1e-5 T) for flat bottom
	- ◆ Hysteresis not perfectly captured even with additional data (1h varied operational cycles)
	- ◆ Bouc-Wen model used for physics loss does technically not account for rate-dependent effects (eddy currents)
- ➔ SOTA generic time series models like Temporal Fusion Transformer
	- Work better, but are
		- Very expensive to train
		- Requires vast amounts of data
		- Not quaranteed to generalize
- ➔ Future plans: PINNs
	- Augment existing architectures like TSMixer with physics loss
	- ◆ Choice of physics model highly important; Bouc-Wen model might not be sufficient

SPS main dipole field prediction vs measured, for fixed target cycles

Flat bottom prediction and ground truth

Tune and chromaticity settings

- We can measure tune and record all machine settings
	- Also save momentum offset
- \rightarrow Forcing (via loss function) the relationship between tune and chroma for given momentum offset => get chroma along the cycle
- \rightarrow We could then invert this model to be able to control tune and chroma on demand => normalizing flows?

$$
\mathcal{L} = \sqrt{\left[Q_{h_{true}} - (Q_{\beta h} + \frac{\Delta p}{p}Q'_h)\right]^2 + \left[Q_{v_{true}} - (Q_{\beta v} + \frac{\Delta p}{p}Q'_v)\right]^2}
$$

LSTM for temperature prediction

- ➔ Two LSTM layers with 170 units with dropout layer with 50% probability, linear layer for the output prediction
	- The loss function is calculated comparing the whole output sequence.

 $\hat{Y} = NN(X);$ $X \in t(-40, 0]; \hat{Y} \in t[1, 30].$

Adding physics information

-
- → Bridge from pure data-driven model and pure physics model to PINN
- ➔ Solve heat equation with forcing term from beam-based measurements:
	- ◆ Power loss from beam induced heating

$$
\Delta W = (f_0 e I_b N_b)^2 \sum_{k=-\infty}^{\infty} (|\Lambda(k\omega_0)|^2 \Re \left[Z_{||}(k\omega_0) \right]) \qquad \frac{d}{dt} T = \frac{\Delta W}{F_{cool} C_{th}}
$$

Heat propagation inside the kicker and to temperature sensor:

VAE for BTVD image reconstruction

31

 \rightarrow Output

Decoder

Input

 $\text{-} \mathsf{Code}$

Encoder

BTVDD image reconstruction in SPS

- \rightarrow LHC beam dump status reconstruction from beam images
- \rightarrow Here the most complicated part is to simulate different filling patterns
	- ◆ Number for batches very difficult for many single bunches
	- ◆ batch spacing very difficult for single bunches

BTVDD image reconstruction in LHC

- \rightarrow LHC beam dump status reconstruction from beam images
- \rightarrow Here the most complicated part is to simulate different filling patterns
	- ◆ Number for batches very difficult for many single bunches
	- ◆ batch spacing very difficult for single bunches

Models in operation

SBDS anomaly detection

Problem:

- \rightarrow Classify BTV images as good/anomaly
- ➔ Unlabeled dataset
- \rightarrow Most beam dumps are ok, i.e. dataset is biased towards good images.

Solution: Autoencoder:

MAY

- \rightarrow Reconstruction error:
	- $E = (1 \epsilon)e_w(x_{\text{good}}) + \epsilon e_w(x_{\text{bad}})$
- \rightarrow High reconstruction error likely means an anomalous dump

[F. Hunh]

Summary and prediction

- ➔ Testing prediction on different scenarios
- ➔ Summary:
	- ◆ Model results very promising
	- ◆ Model ready and used in CCC to make estimation of time left for HI beams
	- Model not capable to extrapolate
- \rightarrow Need to include physics in the model…

-
- ➔ We are working towards more automated and even more predictable machine operation
- \rightarrow Dealing with relatively small dataset and physics process partially known ⇒ Physics Informed machine learning
	- ◆ Rather simple to introduce physics awareness
	- Difficult to train
- \rightarrow First results look encouraging
	- In many cases still at PoC stage
- ➔ Model deployed only data driven so far
- \rightarrow Looking at other possible applications for PINN:
	- Optimisation of septa design via PINN-surrogate
	- ◆ Replacement for PDE solvers for mechanical design or design optimisation

Thanks!

MKDH pressure prediction

- \rightarrow We can transform the problem to predict the probability of a vacuum spike give beam parameters
- → Pure Bayesian probabilistic model: used pyMC to build a model that respect physics behind vacuum response
- \rightarrow Such a model can also show us if the element is showing conditioning with time

PhyLSTM for SPS quadrupole hysteresis `

- ➔ After many attempts, we managed to train successfully one PhyLSTM for hysteresis prediction
	- Not fully optimised yet
	- ◆ Not enough data to make a proper general model for SPS quadrupoles
	- ◆ Hyperparameters not tuned yet

PhyLSTM³

(relu): LeakyReLU(negative-slope=0.01) (Lstm0): LSTM(1, 350, num-Layers=3, batch-first=True, dropout=0.2) (fc0): Linear(in-features=350, out-features=175, bias=True) (fc01): Linear(in-features=175, out-features=3, bias=True) (gradient): GradientTorch() (Lstm): LSTM(3, 350, num-layers=3, batch-first=True, dropout=0.2) (fc1): Linear(in-features=350, out-features=175, bias=True) (fc11): Linear(in-features=175, out-features=1, bias=True) (Lstm3): LSTM(2, 350, num-layers=3, batch-first=True, dropout=0.2) (fc2): Linear(in-features=350, out-features=175, bias=True) (fc21): Linear(in-features=175, out-features=1, bias=True) (g-plus-x): Sequential((0): Linear(in-features=2, out-features=350, bias=True) (1) : ReLU $()$ (2): Linear(in-features=350, out-features=1, bias=True))

LSTM model for MKP: results

- ➔ Trained model repreduced training and validation data set almost perfectly
	- ◆ Trained on max sequence of 30 steps and capable to extend to ~100 with reasonable errors
	- ◆ Error in the order of a couple of degrees on test dataset

 \rightarrow Bayesian version looking also promising

Prediction for 2021 scrubbing

- \rightarrow Testing the prediction on 10/14h scrubbing, with 288x1.5e11 p at 100% availability...we should reach the **60°C in the first 2 runs of 10h**!!
- \rightarrow Here we really see this as the model is not capable to extrapolate…
- ➔ Both models saturates at 60°C (since no data beyond this in our training set) and cannot predict correctly cooldown after 57°C as data on that either...

- \rightarrow With this architecture, we can generate BTVDD images from generative parameters (number of kickers…) using the decoder by itself
- \rightarrow Orthogonal scan possible

Latent space scan

- \rightarrow With this architecture, we can generate BTVDD images from generative parameters (number of kickers…) using the decoder by itself
- ➔ Orthogonal scan possible

Deploy on real data

