Generative models for molecules in equillibrium

Jonas Köhler

Why generative modeling for molecules?

find candidates for drugs and materials (inverse design)

advance science

understand molecular origin of diseases

Some Motivation: binding affinity prediction

Molecules are not static...

Potential energy

$$\mu(\mathbf{x}) = \frac{\exp(-u(\mathbf{x})/kT)}{Z}$$
Which one binds better?
$$\mu(\mathbf{x}) = \frac{\exp(-u(\mathbf{x})/kT)}{Z}$$
Which one binds better?
$$P(A)$$

$$P(A)$$

$$P(B)$$

$$P(B)$$

$$P(B)$$

$$F(B)$$

Answers requires sampling...

 $\mathbf{x} \sim \exp(-u(\mathbf{x}))/Z$ * :-(

easy to make mistakes...

Classic workhorse: Molecular / Langevin dynamics simulations

 $\mathbf{x} \leftarrow \mathbf{x} - \nabla_{\mathbf{x}} u(\mathbf{x}) dt + \sqrt{2dt} \ \eta, \quad \eta \sim \mathcal{N}(0, I)$

Numerical precision: step size 1-4 fs

Relevant biological scales: 1 ms \rightarrow hours...

Computing FED requires sampling...

Classic workhorse: Molecular / Langevin dynamics simulations

2ms of molecular dynamics

= ~1 Ph.D. = ~ 500 G]

Nu Source: Frank Noé

Boltzmann Generators

B

Frank Noé

Simon Olsson

Hao Wu

- 1. Sample noise from base distribution
- 2. Transform via a trainable diffeomorphism (Normalizing Flow)
- 3. Reweigh against the target

Boltzmann Generators. Noé*, Olsson*, <u>IK</u>*, Wu. Science. 2019

1: Variational inference with normalizing flows. Rezende & Mohammed. ICML. 2015

Figure: Neural ODEs, Chen et al. NeurIPS. 2018

Training mode I: negative log-likelihood

10

Boltzmann Generators. Noé*, Olsson*, <u>IK</u>*, Wu. Science. 2019

Boltzmann Generators. Noé*, Olsson*, JK*, Wu. Science. 2019

Our setup

1. NLL on biased samples (e.g. non-converged MD trajectory)

2. combine with KL training

3. correct with importance sampling

$$\mathbb{E}_{\mu}[O(x)] = \mathbb{E}_{x \sim p} \left[\frac{\mu(x)}{p(x)} O(x) \right]$$

Joint loss:

$$\mathcal{L}(\theta) = \alpha \cdot \mathcal{L}_{KL}(\theta) + \beta \cdot \mathcal{L}_{NLL}(\theta)$$

better fit

convex combination

Test systems

dimer in particle box

protein (BPTI) in implicit solvent

Boltzmann Generators. Noé*, Olsson*, JK*, Wu. Science. 2019

Results

Actual picture of the method at this state...

Topology / representation?

Internal Coordinates + Whitening

Symmetries?

Equivariant Flows

TL/DR: normalizing flows with group symmetries

Equivariant Flows. Köhler*, Klein*, Noé. ICML. 2020

Symmetries

Invariant energy / density

$$\forall R \in \rho(G) \colon u(Rx) = u(x)$$

Arbitrary flow maps

$$p(Rx; \theta) \neq p(x; \theta)$$
 - Bad for reweighing!

Handles data inefficiently!

19

Figure: Neural ODEs, Chen et al. NeurIPS. 2018

Equivariant Flows

Constraint on group representations

 $\mu(\rho(g)x) = \mu(x)$ $|\det \rho(g)| = 1.$

Important for molecules:

$$G \leq O(n)$$

Smooth Flows

TL/DR: fix broken topology with smooth transforms on hypertorus!

Smooth Normalizing Flows. Köhler*, Krämer*, Noé. NeurIPS. 2021

Smooth+FM

2000

1000

-1000

-2000

2000

-1000

-2000

-2000 ò 2000

Target Forces [k_BT/nm]

42%

2000

ò

38%

Marginal distribution

Rigid body flows for molecular crystals

Pim de

Haan

Michele Invernizzi Frank Noé

TL/DR: smooth and equivariant flows on SE(3)

Motivation: solvent systems and crystals

$$\begin{array}{c} x \in \mathbb{R}^{n \cdot a \cdot 3} \\ for water a = 3 \\ \end{array}$$

$$\begin{array}{c} & \underbrace{Usually \ fixed :} \\ & \underbrace{Usually \ fixed :} \\ & \underbrace{usually \ fixed :} \\ & \underbrace{1 \times augle} \\ & z \times boud \ leugth \end{array}$$

$$\begin{array}{c} & \underbrace{Degrees \ of \ freedow:} \\ & position \ r \in \mathbb{R}^{3n} \\ & rotation \ \mathcal{R} \in (SO(3))^n \end{array} \right\} \quad 6 < 9 \ dof \ ! \\ \end{array}$$

$$\begin{array}{c} & \underbrace{Support \ manifold:} \\ & M = \left\{ x \in \mathbb{R}^{n \cdot a \cdot 3} \mid \mu(x) \neq 0 \right\} = \left[\mathbb{R}^3 \times SO(3) \right]^n \neq \mathbb{R}^{n \cdot a \cdot 3} \end{array}$$

Cut manifold open into charts and apply flow to chart

- Easy to implement
- Fast

Figure: Gemici (2015)

• Non-smooth solutions!

Figure: Wikipedia

Continuous flows on manifolds

Integrate NN dynamics on manifold

- Works on every Riemannian manifold
- Smooth
- Difficult to train
 - Likelihood easy with flow-matching...
 - Rev. KL: adjoint method
- Slow integration
- Not scalable to high dimensions

<u>Covering</u> flows $\pi: \mathbb{R} \to S^{\uparrow}, x \mapsto exp(i \cdot x)$ p(x) V-2 V-1 V V, R Т $\pi^{-1}(\mathfrak{U}) \cong \mathfrak{U} \times \mathbb{Z}$ $\widetilde{\rho}(r) = \sum_{k \in \mathbb{Z}} \rho(x+k)$ Π 0 21

Return of the gradient flows

Strictly convex
$$\phi : \mathbb{R}^4 \to \mathbb{R}$$

$$\Phi_{CG}(\boldsymbol{x}) = \frac{\nabla_{\boldsymbol{x}} \phi(\boldsymbol{x})}{\|\nabla_{\boldsymbol{x}} \phi(\boldsymbol{x})\|}$$

Boltemann Generators:(earned Tree Energy Perturbation
respice prior N(0, I)high temp.Simple prior N(0, I), easy" system
flow
$$exp(-u_{0}(x))$$
high temp.flow $\overline{\Psi}$ $=$ $flow$ $\overline{\Psi}$ bw temp.flow $\overline{\Psi}$ $=$ $flow$ $\overline{\Psi}$ bw temp.target $exp(-u(x))$ target $exp(-u_{n}(x))$ bw temp. $\Delta \mp [u_{0}; u_{n}] \leq UL[P_{flow} \parallel P_{target}]$

Targeted free energy estimation via learned mappings, Wirnsberger et. al., JCP 2020

Results: Ice in different thermodynamic states

~

	a)						-				-
loss	-40.0 -40.5 -41.0 -41.5	ΔF		1.0 - - 8.0 - 0.6 - - 4.0 d - 4.0 - 0.0 -		base mapped target reweighted	12 - 10 - 8 - 6 - 6 - 2 - 0 -		A	 base mapped target 	N=16 T=100 K
		0 2000	4000 6000 8000 10	0000	-60 -58	-56 -54	0	.2 0.3	0.4 0.5	0.6 0	0.7
			steps		potential en	ergy / N [k]/mol]			r [nm]		
loss a) -106 -108 -110 -112 -112	ΔF	4000 6000 8000 100 steps	2.0 - 5.1.5 - 2.0 - 2.1.5 - 2.0 - 2.1.5 - 2.0 - 2.1.5 - 2.0 - 2	-60 -58 potential ene	base mapped target reweighted	12 - 10 - 10 - 8 - 9 - 2 - 0 - 2 - 0 - 2 - 0 -	2 0.3	0.4 0.5 r [nm]	base mapped target	² N=16, T=50 K
~	`										
Ċ.	/39.0] [п		12				1.
		∆F	See a second	3 -		base	121		_	base	
	-39.5		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			mapped	10			mapped	18
	40.0		and the second s	>-		target	5 8-			target	1
	-+U.U		24			rowoighted					1 11

TARGET	MBAR	LFEP
N=16, T=100 K N=16, T=50 K N=128, T=100 K	$\begin{array}{c} -41.857 \pm 0.007 \\ -114.251 \pm 0.007 \\ -41.535 \pm 0.002 \end{array}$	$\begin{array}{c} -41.859 \pm 0.002 \\ -114.252 \pm 0.005 \\ -41.534 \pm 0.003 \end{array}$

Thanks!

