Problem solving as a translation task

François CHARTON, Meta AI

Mathematics as translation

• Train models to translate problems, encoded as sentences in some language, into their solutions

• 7+9
$$
\Rightarrow
$$
 16
\n• $x^2 - x - 1 \Rightarrow \frac{1 + \sqrt{5}}{2}, \frac{1 - \sqrt{5}}{2}$

Maths as translation: learning GCD

- Two integers a=10, b=32, and their GCD gcd(a,b)=2
- Can be encoded as sequences of digits in base 10:
	- $`+$ ', $`1'$, $`0'$
	- $f' + 3$, $f' + 3$, $f' + 2$
	- $f + 3$, $f + 2$
- Translate f' , f' , f' , f'' , f' , f' , f'), f' 2' into f' , f' , f'
	- From examples only
	- As a "pure language" problem: the model knows no maths

This works!

- Symbolic integration / Solving ODE:
	- Deep learning for symbolic mathematics (2020): Lample & Charton (ArXiv 1912.01412) <https://arxiv.org/abs/1912.01412>
- Dynamical systems:
	- Learning advanced computations from examples (2021) : Charton, Hayat & Lample (ArXiv 2006.06462)
	- Discovering Lyapunov functions with transformers (2023) : Alfarano, Charton, Hayat (3rd MATH&AI workshop, NeurIPS)
- Symbolic regression:
	- Deep symbolic regression for recurrent sequences (2022) : d'Ascoli, Kamienny, Lample, Charton (ArXiv 2201.04600)
	- End-to-end symbolic regression with transformers (2022) : Kamienny, d'Ascoli, Lample, Charton (ArXiv 2204.10532)
- Cryptanalysis of post-quantum cryptography:
	- SALSA: attacking lattice cryptography with transformers (2022): Wenger, Chen, Charton, Lauter (ArXiv 2207.04785)
	- SALSA PICANTE (2023) Li, Sotakova, Wenger, Mahlou, Garcelon, Charton, Lauter (ArXiv 2303.0478)
	- SALSA VERDE (2023) Li, Wenger, Zhu, Charton, Lauter (ArXiv 2306.11641)
- Theoretical physics
	- Transformers for scattering amplitudes (2023): Merz, Cai, Charton, Nolte, Wilhelm, Cranmer, Dixon (ML4PS Workshop, NeurIPS)
- Quantum computing
	- Using transformer to simplify ZX diagrams (2023) (3rd MATH&AI Workshop, NeurIPS)

Why do this?

- A challenge: like Go, like Chess
	- "When computers can do XXX, we will have artificial intelligence"
- A pre-requisite for AI for Science
	- No maths no science
- A framework for understanding transformers
	- and deep learning
	- and perhaps some science

Problem solving as translation

- I. Symbolic integration: an initial example
- II. Scattering amplitudes: an application to theoretical physics
- III. Eigenvalues and GCD: robutsness and explainability

Deep learning for symbolic mathematics (2019)

• Train transformer to compute symbolic integrals

$$
\frac{\cos(2x)}{\sin(x)} \qquad \frac{\log(\cos(x) - 1)}{2} - \frac{\log(\cos(x) + 1)}{2} + 2\cos(x)
$$

- Undergrad mathematics
- Not trivial for mathematicians
- Hard for machines (Risch algorithm)

Deep learning for symbolic mathematics (2019)

- Three steps
- Represent problems and solutions as sequences
- Generate large sets of problems and solutions
- Train transformers to translate problems into solutions

Expressions as trees

Trees as sequences

- Polish notation (aka pre-order enumeration)
	- Begin from root
	- Parent before child
	- Children from left to right

Expressions as sequences

Ready for the transformer!

 $2+3\times(5+2)$ $+ 2 * 3 + 5 2$

 $3x^2 + \cos(2x) - 1$ $+$ * 3 pow x 2 - cos * 2 x 1

 $\frac{\partial^2 \psi}{\partial x^2} - \frac{1}{\nu^2} \frac{\partial^2 \psi}{\partial t^2}$ ∂ ∂ ψ x x $*$ / 1 pow ν 2 ∂ ∂ ψ t t

Generating data – three approaches

• Forward

- Generate a random function f
- Compute its integral F
- Backward
	- Generate a random function F
	- Compute its derivative f
- Integration by part
	- Generate random functions F and G
	- Compute their derivative f and g
	- If fG is in the dataset, we get Fg for free using

$$
\text{log}\quad \int Fg = FG - \int fG
$$

- How to generate a random function?
	- Generate a random tree
	- Randomly select operators for its nodes
	- Constants and small integers for its leaves
- Why three training sets?
	- Different generating procedures explore different parts of the problem space

Functions and their primitives generated with the forward approach (FWD)

 $x \cos^{-1}(x) - \sqrt{1-x^2}$ $\cos^{-1}(x)$ $\frac{2x^3}{2} + \frac{x \sin(2x)}{2} + \frac{\cos(2x)}{4}$ $x(2x + \cos(2x))$ $\frac{x^2}{2} + 2x - 4\log(x+2)$ $\frac{x(x+4)}{x+2}$ $\frac{\cos\left(2x\right)}{\sin\left(x\right)}$ $\frac{\log (\cos (x) - 1)}{2} - \frac{\log (\cos (x) + 1)}{2} + 2\cos (x)$ $x^3 \sinh^{-1}(2x) - \frac{x^2 \sqrt{4x^2+1}}{6} + \frac{\sqrt{4x^2+1}}{12}$ $3x^2 \sinh^{-1}(2x)$ $x^3 \log (x^2)^4 \quad \left| \quad \frac{x^4 \log (x^2)^4}{4} - \frac{x^4 \log (x^2)^3}{2} + \frac{3x^4 \log (x^2)^2}{4} - \frac{3x^4 \log (x^2)}{4} + \frac{3x^4}{8} \right|$

Functions and their primitives generated with the backward approach (BWD)

 $\cos(x) + \tan^2(x) + 2$ $x + \sin(x) + \tan(x)$ $\frac{\sqrt{x-1}\sqrt{x+1}}{x}$ $\frac{1}{x^2\sqrt{x-1}\sqrt{x+1}}$ $\left(\frac{2x}{\cos^2(x)} + \tan(x)\right) \tan(x)$ $x\tan^2(x)$ $x \tan\left(\frac{e^x}{x}\right) + \frac{(x-1)e^x}{\cos^2\left(\frac{e^x}{x}\right)}$ $x \tan\left(\frac{e^x}{x}\right)$ $1+\frac{1}{\log(\log(x))}-\frac{1}{\log(x)\log(\log(x))^2}$ $x + \frac{x}{\log(\log(x))}$ $\left[-2x^2\sin(x^2)\tan(x)+x\left(\tan^2(x)+1\right)\cos(x^2)+\cos(x^2)\tan(x)\;\right]\quad x\cos(x^2)\tan(x)$

Functions and their primitives generated with the integration by parts approach (IBP)

Three training sets

- Expressions with up to 15 operators
- Operators are the 4 basic operation (+-*%), and elementary functions (Liouville): exp, log, sqrt, pow, sin, cos, tan, sinh, cosh, tanh and their inverses
- Coefficients are integers between -5 and 5

Training models

- 6-layer encoder-decoder transformers with 256 dimensions and 8 attention heads
- The model is trained on generated data
	- Supervised learning, minimizing cross-entropy
	- A pure language task: the model has no understanding of maths
- Tested on held-out data (i.e. not seen during training)
- Solutions are verified with an external tool (SymPy)
	- Using problem-related mathematical metrics

In-domain results

- Performance on held-out test sets with the same distribution as training
- Almost 100% no matter the generation procedure
- Outperforms best computer algebras

Limitations : distribution woes

- Generated data: training and test examples come from the same generator
- What if they don't?

Distribution woes

- IPB stands "in-between" FWD and BWD: better generalization
- Training distribution matters
- Out-of-distribution generalization is possible so long test distribution is not 'too far'

- Symbolic mathematics can be learned from examples only
- In-domain, we achieve comparable performance with computer algebras (Mathematica)

- Out of distribution generalization is hard
- Training distribution matters

Transformers for scattering amplitudes (2023) (Cai, Merz, Nolte, Wilhelm, Cranmer, Dixon, Charton)

- Scattering amplitudes: complex functions predicting the outcome of particle interactions
- Computed by summing Feynman diagrams of increasing complexity
	- loops: virtual particles created and destroyed in the process
- A hard problem: each loop introduces two latent variables, their integration give rise to generalized polylogarithms
	- For the standard model the best computational techniques only reach loop 3

Amplitude bootstrap (Dixon, Wilhelm)

- Polylogarithms have many algebraic properties
	- Leverage them to predict the structure of the solution, up to some coefficients
	- Compute the coefficients from symmetry consideration, known limit values, etc.
- In Planar N=4 supersymmetric Yang-Mills, solutions are "simple"
	- Calculated from symbols: homogeneous polynomials, degree 2L (L=loop), with integer coefficients

The three-gluon form factor

- Three gluons and a massless Higgs
- Loop symbols are homogeneous polynomials of degree 2L
	- in six (non commutative) variables: a,b,c,d,e,f
	- with integer coefficients, most of them zero
	- \cdot 16 aabddd + 48 aabbff 12 abcece +
- Symmetries and asymptotic properties translate into constraints:
	- An gigantic integer programming problem
	- Lots of regularities in the symbol
- Can transformers help?

number of terms $\overline{1}$ 6 12 636 11,208 263,880 5 6 4,916,466 $\overline{7}$ 92,954,568 8 1,671,656,292

TABLE II. Number of terms in the symbol of $F_3^{(L)}$ as a function of the loop order L .

Experiment 1 : Predicting zeroes

- For Loop 5 and 6, predict whether a term is zero or nonzero
	- afdcfdadfe is zero
	- aaaeeceaaf is not
- Build a 50/50 training sample of zero/non zero terms
- Reserve 10k terms for test, they will not be seen at training
- Train the model, and measure performance on the test set (% of correct prediction)
	- For input a,f,d,c,f,d,a,d,f,e predict 0
	- For input a,a,a,e,e,c,e,a,a,f predict 1

Experiment 1 : Predicting zeroes

- Loop 5 : after training on 300,000 examples (57% of the symbol), the model predict 99.96% of test examples (not seen during training)
- Loop 6 : after training on 600,000 examples (6% of the symbol), the model predicts 99.97% of test examples

Experiment 2 : Predicting non-zeroes

- From keys, sequences of 2L letters, predict coefficients, integers encoded in base 1000
- For loop 5, models trained on 164k examples (62% of the symbol), tested on 100k
	- 99.9% accuracy after 58 epochs of 300k examples
- For loop 6, models trained on 1M examples (20% of the symbol), tested on 100k
	- 98% accuracy after 120 epochs
	- BUT a two step learning curve

Experiment 2 : Predicting non-zeroes

• full prediction, magnitude and sign

Experiment 3 : Learning with less symmetries

- Non zero coefficients
	- Must begin with a,b,c and end with d,e,f
	- Are invariant by dihedral symmetry
	- Cannot have a next to d (b next to e, c next to f)
	- Cannot have d next to e or f (e next to d or f)
- Only a few endings are possible:
	- 8 "quads" (4 letter endings, up to cyclic symmetry (a,b,c), (d,e,f))
	- 93 octuples

Experiment 3 : Learning loop 7 quads

- 7.3 million elements in the symbol (vs 93 millions in full representation)
- Models learn to predict with 98% accuracy
- Same "two step" shape

Experiment 3 : Learning loop 8 octuples

- 5.6 million elements in the symbol (vs 1.7 billions in full representation)
- Models learn to predict with 94% accuracy
- Attenuated "two step" shape
- Slower learning (600 epochs, vs 200 for quads, and 70 for full representation)

Take aways from experiments 1-3

- We can use transformers to complete partially calculated loops
- Coefficients are learned with high accuracy
	- Even when only a small part of the symbol is available
- A few unintuitive observations happen:
	- hardness of learning the sign
	- might shed new light on the underlying phenomenon

Experiment 4: predicting the next loop

- A loop L element E is a sequence of 2L letters
- Strike out 2 of the 2L letters
	- From aabd make bd, ad, ab...
	- There are L(2L-1) parents, call them P(E)
- Try to find a recurrence relation, that predicts the coefficient of E from its parents: $E = f(P(E))$
	- A generalized Pascal triangle/pyramid (in 6 non-commutative variables)
- Predict loop 6 from loop 5:
	- From 66 integers: loop 5 coefficients
	- Predict 1 integer: the loop 6 coefficient
	- (NOT the keys: we already know the model can predict coefficients from keys)
- 98.1% accuracy, no difference between sign (98.4) and magnitude (99.6) accuracy
- A function f certainly exists (but we have no idea what it is)

Experiment 4: understanding the recurrence

- To collect information on f, the unknown recurrence, we could
	- Remove information about the parents
	- See if the model still learns
- Can we use less parents?
	- Only strike letters at most k tokens apart; e.g. k=1 only consecutive tokens
	- k=2: 21 parents, k=1: 11 parents

Experiment 4: understanding the recurrence

- Shuffling/sorting the parents do not prevent learning
- Coupling between parent/children signs, and magnitudes

Table 2: Global, magnitude and sign accuracy. Best of four models, trained for about 500 epochs

Next steps

- Better understanding the recurrence relation
	- Try building loop 9, or loops for related problems
- Discovering local properties/symmetries in the symbol
	- Symbols were calculated by exploiting known symmetries in nature
	- If we discover new regularities in the symbols, what does is tell us about nature?
	- Antipodal symmetries

Questions for transformers

- Do they learn really learn maths?
	- Or are they learning shortcuts, i.e. parroting statistical patterns
- Are the failures predictable and principled?
	- Or do models confabulate, and fail at random
- Can their predictions be explained?
	- Or are they black boxes?
- Training data are generated, what is the impact their distribution?

Linear algebra with transformers (Charton 2021)

- Basic linear algebra is learned, with small models
	- Transposition: 100% accuracy, up to 30x30 matrices, with 1-layer transformers
	- Addition: 99% accuracy, up to 20x20 matrices, 2-layer transformers
	- Matrix-vector product: 100% accuracy, up to 10x10 matrices, 2-layer transformers
	- Multiplication: 100% accuracy, 5x5 matrices, 1 / 4 layer transformers
- Advanced tasks can also be learned
	- Eigenvalues: 100% accuracy for 5x5 to 20x20 matrices
	- Eigen decomposition: 97% for 5x5, 82% for 6x6 matrices
	- SVD decomposition: 99% accuracy for 4x4 matrices
	- Matrix inversion: 90% for 5x5 matrices

Learning to diagonalize

- Given a symmetric matrix M
- Find a vector D and a matrix H such that $HMH^{T} = HMH^{-1} = diag(D)$
- From examples only, i.e. triplets (M, D, H)
- We know from theory (spectral theorem):
	- That D are the eigenvalues (unique up to a permutation)
	- That H is unitary, and its rows and columns
		- are orthogonal
		- have unit norm

Learning to diagonalize

- Train a model to 92% accuracy, test it on 100 000 matrices
	- 92 000 correct predictions, 8 000 errors
- In all test cases but 6 (99.99%), the eigenvalues are predicted with less than 1% error
- In 98.9% of test cases, all rows and columns of H have unit norm
- The two properties of diagonalization are respected even when the model fails
- Some maths have been learned

Learning the spectral theorem

- These results hold early in training:
	- With a half-trained model, with 70% accuracy
	- eigenvalues are correct in 99.6% of test cases,
	- rows and columns of H have unit norms in 96.7%.
- For harder cases, on 6x6 matrices, a model only achieves 43% accuracy, yet
	- eigenvalues are correct in 99.6% of test cases
	- rows and columns of H have unit norms in 93.1%
- No hallucination: the model always remains "roughly right"

Understanding model failures

- Almost all failures are due to rows and columns of H not being quite orthogonal
- Eigenvalues, and the norm of eigenvectors are always learned
- The model does not output absurd solutions (aka hallucinations)
- Error can be predicted from the condition number of H (ratio of its extreme singular values), which should be 1.
	- c(H) > 1.045 predicts 99.3% of model outcomes (99.9% of successes, and 96.7% of failures)

Understanding model failures - Matrix inversion

- Given a matrix M, predict P such that MP≈Id
	- M is invertible, so M^{-1} always exists
- Models struggle to achieve more than 90% accuracy
	- They predict P≈M-1 , but we don't have MP≈Id
	- Ill-conditioned matrices: a typical difficulty with this task
- The condition number of M (c(M)>66) predicts 98% of model outcomes (only the input is needed, no need to run the model)
- Our models fail for good mathematical reasons
- Failures are principled and predictable

Computing eigenvalues – out-of-distribution results

- Models are trained on symmetric matrices with independent coefficients
- Wigner Matrices: eigenvalues are distributed as a semi-circle
	- Symmetric around 0
	- Variance depends on coefficient varianc and matrix dimension
	- Bounded support
- Can we generalize to non-Wigner matrices?

Eigenvalues – out-of-distribution generalization

Table 1: Out-of-distribution generalization. Eigenvalues of 5x5 matrices. Rows are the training distributions, columns the test distributions.

- Gauss and Laplace generalize to Wigner (but not the other way around)
- Can generalize far away from training distribution: to positive definite matrices

Eigenvalues – out-of-distribution generalization

• Robust distributions learn faster

Table 2: Out-of-distribution generalization. Eigenvalues of 8x8 and 10x10 matrices, accuracy after 36 million examples. Rows are the training distributions, columns the test distributions.

- The underlying mathematics are sometimes learned
	- You need to investigate failures
- Out-of-distribution generalization is possible
- Special "robust" distributions exist
	- Allow for faster learning
	- Seem problem independent

Can transformers learn greatest common divisor? (Charton 2023)

- Train a model on sequences of 4 integers, a,b,c,d
	- It can learn to predict if a/b < c/d with 100% accuracy, after just a few examples
	- It will never learn to compute a/b+c/d, or ac/bd
	- It cannot even learn to simplify a/b
- Can a transformer learn to compute GCD?

Learning the greatest common divisor

- Generate random pairs of integers between 1 and 1,000,000
- Compute their gcd, train a model to predict it
- Test on a held-out dataset (100k examples)

- Problem space size: 10^{12} , no chance that the model memorizes all the cases
- Uniform inputs, no training distribution specificity to exploit

Learning the greatest common divisor

- Encoding input/output in base 30
- 1-layer transformers, 64 dimensions
- 85% accuracy after one epoch (300k examples)
- 94.6% accuracy after 150 epochs (45M examples)
- Surely, the maths are learned

Learning the greatest common divisor?

- Encoding input/output in base 31
- Accuracy plateaus around 61%
- Accuracy seems base-dependent

Learning the greatest common divisor???

- Top to bottom, bases 30, 6, 10, 2, 3, 31…
- The gcd should not be basedependent
- Are we really learning the maths?

Looking at model predictions

	Base 2		Base 10			Base 2		Base 10			Base 2		Base 10	
GCD	Pred	$\%$	Pred	$\%$	GCD	Pred	$\%$	Pred	$\%$	GCD	Pred	$\%$	Pred	$\%$
		100		100	13		100		100	25		100	25	100
2	2	100	2	100	14	2	100	2	100	26	2	100	2	100
3		100		100	15		100	5	100	27		100		100
	4	100	4	100	16	16	100	16	99.7	28	4	100	4	100
		100	5	100	17		100		100	29		100		100
6	2	100	2	100	18	2	100	2	100	30	2	100	10	100
		100		100	19		100	1	100	31		100		100
8	8	100	8	100	20	4	100	20	100	32	32	99.9	16	99.9
9		100		100	21		100		100	33		100		100
10	2	100	10	100	22	2	100	2	100	34	2	100	2	100
11		100		100	23		100		100	35		100	5	100
12	4	100	4	100	24	8	100	8	100	36	4	100	4	100

Table 3: Model predictions and their frequencies, for GCD 1 to 36. Correct predictions in bold face.

Learning the greatest common divisor???'

- In base 2, gcd 1,2,4,8, 16... are correctly predicted
	- The model counts the rightmost zeroes
		- 11100 (28) and 1110 (14) have gcd 2
		- 111100 (60) and 111000 (56) have gcd 4

The three rules

- (R1) **Predictions are deterministic.** The model predicts a unique value $f(k)$ for almost all (99.9%) pairs of integers with GCD k. Predictions are correct when $f(k) = k$.
- $(R2)$ Correct predictions are products of primes dividing B. For base 2, they are 1, 2, 4, 8, 16, 32 and 64. For base 31, 1 and 31. For base 10, all products of elements from $\{1, 2, 4, 8, 16\}$ and $\{1, 5, 25\}$. For base 30, all products of $\{1, 2, 4, 8\}$, $\{1, 3, 9, 27\}$. and $\{1, 5, 25\}$.
- (R3) $f(k)$ is the largest correct prediction that divides k. For instance, $f(8) = 8$, and $f(7) = 1$, for base 2 and 10, but $f(15) = 5$ for base 10 and $f(15) = 1$ for base 2.

So far disappointing

Tuble 2. Fullion of collect OCD and if you and accuracy. Dest of 6 experiments.										
Base			4		$\mathbf b$		10	11	12	
Correct GCD Accuracy	81.6	68.9	81.4	64.0	19 91.5	3 62.5	13 84.7	61.8	19 91.5	9 71.7
Base	30	31	60	100	210	211	420	997	1000	1024
Correct GCD Accuracy	27 94.7	2 61.3	28 95.0	13 84.7	32 95.5	61.3	38 96.8	61.3	14 84.7	81.5

Table 2 : Number of correct GCD under 100 and accuracy. Best of 6 experiments

Large bases and grokking

- Base $2023 = 7.17.17$
- After 10 epochs: 1,7, and 17 are learned, accuracy 63%, 3 GCD
- At epoch 101, 3 is learned, together with 21 (3.7) and 51 (3.17)
- At epoch 200, 2 is learned (and 6, 14, 34, 42): 11 GCD
- At epoch 600, 4 is learned: 16 GCD, 93% accuracy

Figure 5: Learning curves for base B=2023. 3 different model initializations.

Large bases and grokking

This phenomenon is related to grokking, first described by Power. [22] for modular arithmetic. Table 5 presents model predictions for base 1000, which continue to respect rules R1 and R3. In fact, we can update the three rules into the three rules with grokking:

- (G1) **Prediction is deterministic.** All pairs with the same GCD are predicted the same, as $f(k)$.
- (G2) Correct predictions are products of primes divisors of B, and small primes. Small primes are learned roughly in order, as grokking sets in.
- $(G3)$ $f(k)$ is the largest correct prediction that divides k.

Large bases and grokking

Table 6: Predicted gcd, divisors and non-divisors of B. Best model of 3. For non-divisors, the epoch learned is the first epoch where model achieves 90% accuracy for this gcd.

Engineering the training distribution

- Training sets have uniformly distributed operands
	- 90% of them are over 100 000
	- Small GCD, e.g. gcd(6,9) are never seen
- This is not how we are taught / teach arithmetic
	- From easy cases that we sometimes learn by rote
	- Generalizing to harder cases once easy cases are mastered
- Curriculum learning has draw backs: the distribution changes over time
	- Learn the easy cases, but then forget them

Engineering the training distribution

- Log-uniform operands
	- k appears with probability $1/k$
	- As many 1-digit numbers as 6-digit
- No impact on the outcome distribution $(1/k²)$
- No impact on the test sets
- Learning is noisier, but more GCD are learned

Figure 3: Learning curves, Log-uniform training set.

Engineering the training distribution

- Log-uniform operands, fast grokking
- All primes up to 23

Table 6: Accuracy and correct GCD (up to 100), log-uniform operands. Best of three models, trained for 1000 epochs (300M examples). All models are tested on 100,000 pairs, uniformly distributed between 1 and 10^6 .

Base	Accuracy	Correct GCD	Base	Accuracy	GCD	Base	Accuracy	GCD
2	94.4	25	60	98.4	60	2025	99.0	70
3	96.5	36	100	98.4	60	2187	98.7	66
4	98.4	58	210	98.5	60	2197	98.8	68
5	97.0	42	211	96.9	41	2209	98.6	65
6	96.9	39	420	98.1	59	2401	99.1	73
	96.8	40	625	98.2	57	2744	98.9	72
10	97.6	48	997	98.3	64	3125	98.6	65
11	97.4	43	1000	99.1	71	3375	98.8	67
12	98.2	55	1024	99.0	71	4000	98.7	66
15	97.8	52	2017	98.6	63	4913	98.2	57
30	98.2	56	2021	98.6	66	5000	98.6	64
31	97.2	44	2023	98.7	65	10000	98.0	56

Learning large primes, the outcome distribution

- GCD are distributed in $1/k²$, very few examples with large primes
- A log-uniform distribution of operands and outcomes
	- All primes up to 53

Table 9: Accuracy and correct GCD, log-uniform operands and outcomes. Best model of 3.

- Predictions can be deterministic and explainable
- The model learns a sieve:
	- It classifies input pairs (a,b) into clusters with common divisors
	- And predicts the smallest common divisor in the class (when outcomes are not uniformly distributed)
- Training distribution impact accuracy, no matter the test distribution

- Transformers can learn mathematics
	- A new field for research
	- With applications to science
- Mathematical tasks help understand deep learning and transformers