Problem solving as a translation task

Francois CHARTON, Meta Al

Mathematics as translation

* Train models to translate problems, encoded as sentences in some

language, into their solutions
* 749 => 16
1+V/5 1-+/5

° x2-x-1 => =

Maths as translation: learning GCD

* Two integers a=10, b=32, and their GCD gcd(a,b)=2

e Can be encoded as sequences of digits in base 10:
o r_I_J, rlJ’ ‘Q°
o r_I_J, r31, €9
o c+J’ €9
* Translate “+°, €1°, ‘0’ , “+°, 37, 27 into ‘+/, 2’
* From examples only
* As a “pure language” problem: the model knows no maths

This works!

* Symbolic integration / Solving ODE:
* Deep learning for symbolic mathematics (2020): Lample & Charton (ArXiv 1912.01412)
https://arxiv.org/abs/1912.01412

* Dynamical systems:
* Learning advanced computations from examples (2021) : Charton, Hayat & Lample (ArXiv 2006.06462)
* Discovering Lyapunov functions with transformers (2023) : Alfarano, Charton, Hayat (3rd MATH&AI workshop, NeurlPS)

e Symbolic regression:
* Deep symbolic regression for recurrent sequences (2022) : d’Ascoli, Kamienny, Lample, Charton (ArXiv 2201.04600)
* End-to-end symbolic regression with transformers (2022) : Kamienny, d’Ascoli, Lample, Charton (ArXiv 2204.10532)

* Cryptanalysis of post-quantum cryptography:
* SALSA: attacking lattice cryptography with transformers (2022): Wenger, Chen, Charton, Lauter (ArXiv 2207.04785)
* SALSA PICANTE (2023) Li, Sotakova, Wenger, Mahlou, Garcelon, Charton, Lauter (ArXiv 2303.0478)
* SALSA VERDE (2023) Li, Wenger, Zhu, Charton, Lauter (ArXiv 2306.11641)

* Theoretical physics
* Transformers for scattering amplitudes (2023): Merz, Cai, Charton, Nolte, Wilhelm, Cranmer, Dixon (ML4PS Workshop, NeurlPS)

* Quantum computing
* Using transformer to simplify ZX diagrams (2023) (3rd MATH&AI Workshop, NeurlPS)

https://arxiv.org/abs/1912.01412

Why do this?

* A challenge: like Go, like Chess
* “When computers can do XXX, we will have artificial intelligence”

* A pre-requisite for Al for Science
* No maths no science

* A framework for understanding transformers
* and deep learning
* and perhaps some science

Problem solving as translation

|. Symbolic integration: an initial example
Il. Scattering amplitudes: an application to theoretical physics

Ill. Eigenvalues and GCD: robutsness and explainability

Deep learning for symbolic mathematics (2019)

* Train transformer to compute symbolic integrals

cos (2z) S log (cos () —1) log(cos(z) +1)

7

sin (z) 2 >

+ 2 cos ()

 Undergrad mathematics
* Not trivial for mathematicians
* Hard for machines (Risch algorithm)

Deep learning for symbolic mathematics (2019)

* Three steps

* Represent problems and solutions as sequences
* Generate large sets of problems and solutions
* Train transformers to translate problems into solutions

Expressions as trees

0% 1 0%
24+3x(b+2 3x° 4 cos(2z) — 1 T
T3x(6+2) + cos(2z) ozx? v2 Ot?
+ + -
2 X
3/\—|— /X\ /—\ 9 A
P 3 pow cos 1 8/\50 /\
5 2 NS | o~ / 0,
T 2 X Y x N N
RN 1 pow 0 t
2 x PN PN

Trees as seguences

* Polish notation (aka pre-order

. 2+3x(5+2)
enumeration)
|
/\
* Begin from root 2 X
* Parent before child 3/_|_
e Children from left to right 5/\2

Expressions as sequences

Ready for the transformer!

24+ 3x(5b+2) +2*3+52
322 + cos(2z) — 1 + * 3 pow x 2 - cos * 2 x 1
0% 1 0%

92 2 o -0 0 Y xx */ 1lpowv2adadytt
X v

Generating data — three approaches

 Forward
e Generate a random function f
* Compute its integral F

e Backward
e Generate a random function F
 Compute its derivative f

* Integration by part
* Generate random functions Fand G
* Compute their derivative fand g
* If fG is in the dataset, we get Fg for free using /Fg = FG — /fG

Generating data

* How to generate a random function?
* Generate a random tree
* Randomly select operators for its nodes
e Constants and small integers for its leaves

 Why three training sets?
» Different generating procedures explore different parts of the problem space

Generating data

Functions and their primitives generated with the forward approach (FWD)

cos ' (z)
x (2x + cos (2x))

x(x+4)
T+ 2

cos (2x)
sin ()

3z° sinh™" (2z)

z° log (:r;z) !

zcos ™ (z) — /1 — x2

@ 47 sin (2z) = cos (2x)

3 2 4

2

5 + 22 — 4log (x + 2)
1 _
og(cos(z) —1) log(cos(z)+1) +2.cos (z)

2 2
2. [Ap2 2
z° sinh™ (2x) — z 42: +1 + 4312-'_ 1

z* log (332)4 B z* log (332)3 N 32" log (332)2 B 3z*log (z%) 32*

4

2 4 4 8

Generating data

Functions and their primitives generated with the backward approach (BWD)

cos (z) + tan® (z) + 2 z + sin (x) + tan (x)
1 Ve —1J/xz+1
2V — 1z + 1 T
(coszm(m) + tan (m)) tan (x) xtan” (x)
x tan (i) 4+ (e=De? 2
T cos? (?) €
- x tan (;)
1+ 1 - 1 o+ T
log (log (z)) log (x) log (log (z))* log (log (x))
—22° sin (z°) tan (z) + = (tan® (z) + 1) cos (z°) + cos (z°) tan (z) z cos (z°) tan (z)

Generating data

Functions and their primitives generated with the integration by parts approach (IBP)

z? (4 + 6log (x) — 3)
z (z + log (z)) 5
x —x + (z + 3) log (z + 3)

(z +3)° z+3

jo:; 8 (a: + \/Q) tan (x) 4 log (cos (x))
x (2x+5) (3z 4+ 2log (x) + 1) z” (272° + 24z log (‘12 + 94z + 901og (z))
(33 - Sin22$(:1:) + tanl(a;)) log () z log (z) + tan (x)

sin () sin (z) tan (x)

z° sinh (z) 2> cosh (z) — 3z sinh () + 6z cosh (z) — 6sinh ()

Three training sets

* Expressions with up to 15 operators

* Operators are the 4 basic operation (+-*%), and elementary functions
(Liouville): exp, log, sart, pow, sin, cos, tan, sinh, cosh, tanh and their
inverses

* Coefficients are integers between -5 and 5

Forward Backward Integration by parts

Training set size 20M 40M 20M
Input length 18.946.9 70.2447.8 17.5+9.1
Output length 49.6+48.3 21.3+8.3 26.4+11.3
Length ratio 2.7 0.4 2.0
Input max length 69 450 226

Output max length 508 75 206

Training models

* 6-layer encoder-decoder transformers with 256 dimensions and
8 attention heads

* The model is trained on generated data
e Supervised learning, minimizing cross-entropy
* A pure language task: the model has no understanding of maths

* Tested on held-out data (i.e. not seen during training)

* Solutions are verified with an external tool (SymPy)
* Using problem-related mathematical metrics

In-domain results

* Performance on held-out test sets with the same distribution as training
* Almost 100% no matter the generation procedure
* Outperforms best computer algebras

Integration (FWD) Integration (BWD) Integration (IBP)
Beam size 1 93.6 98.4 96.8
Beam size 10 95.6 99.4 99.2
Beam size 50 96.2 99.7 99.5
Integration (BWD)
Mathematica (30s) 84.0
Matlab 65.2
Maple 67.4

19

Limitations : distribution woes

* Generated data: training and test examples come from the same
generator

 What if they don’t?

Forward (FWD) Backward (BWD)
Training data Beam1l Beam1l0 Beam50 | Beam1 Beam 10 Beam 50
FWD 93.6 95.6 96.2 10.9 13.9 17.2
BWD 18.9 24.6 27.5 98.4 99.4 99.7

20

Generating data

Functions and their primitives generated with the forward approach (FWD)

cos ™ (z)
x (2x + cos (2x))

x (x +4)
x+ 2

cos (2x)
sin (x)

3z° sinh™" (2z)

2> log (:cz) *

z* log (932)4 B z* log (a‘:2)3

zcos ™ (z) — /1 — x2

g N zsin (2z) cos (27)
3 2 4

72

- + 2z — 4log (z + 2)

log (cos (z) — 1) _ log (cos (z) + 1) + 2 cos ()
2 2
2 2 2
2 sinh™ (22) — x \/F 4+ 43;24— 1

3z* log (zr;2)2 B 3z* log (562) 3z*

4

2 + 4 4 + 8

Generating data

Functions and their primitives generated with the backward approach (BWD)

cos () + tan® (z) + 2

1
2V — 1z +1

(coszx(m) + tan (:c)) tan (z)

z tan (%) + CE)ES;E)E)
T
1 1

1+

log (log (z)) log (x) log (log (z))?

—22° sin (z°) tan (z) + = (tan® (z) + 1) cos (z°) + cos (z°) tan (z)

z + sin () + tan ()
Ve —1y/z+1

T

ztan” ()

7 Tog (log (2))

z cos (z°) tan (z)

Distribution woes

Forward (FWD) Backward (BWD) Integration by parts (IBP)
Training data Beam1 Beam 10 Beam50 | Beam1 Beam 10 Beam50 | Beam1 Beam 10 Beam 50
FWD 93.6 95.6 96.2 10.9 13.9 17.2 85.6 86.8 88.9
BWD 18.9 24.6 27.5 98.4 99.4 99.7 42.9 54.6 59.2
BWD + IBP 41.6 54.9 56.1 98.2 99.4 99.7 96.8 99.2 99.5

* |PB stands “in-between” FWD and BWD: better generalization

* Training distribution matters
e QOut-of-distribution generalization is possible so long test distribution is not ‘too

)

far

23

Take aways

* Symbolic mathematics can be learned from examples only

* In-domain, we achieve comparable performance with computer
algebras (Mathematica)

* Out of distribution generalization is hard
* Training distribution matters

24

Transformers for scattering amplitudes (2023)

(Cai, Merz, Nolte, Wilhelm, Cranmer, Dixon, Charton)

 Scattering amplitudes: complex functions predicting the outcome of
particle interactions

 Computed by summing Feynman diagrams of increasing complexity
* loops: virtual particles created and destroyed in the process

* A hard problem: each loop introduces two latent variables, their
integration give rise to generalized polylogarithms

* For the standard model the best computational techniques only reach loop 3

Amplitude bootstrap (pixon, wilhelm)

* Polylogarithms have many algebraic properties

* Leverage them to predict the structure of the solution, up to some
coefficients

* Compute the coefficients from symmetry consideration, known limit values,
etc.
* In Planar N=4 supersymmetric Yang-Mills, solutions are “simple”

 Calculated from symbols: homogeneous polynomials, degree 2L (L=loop),
with integer coefficients

The three-gluon form factor

* Three gluons and a massless Higgs
* Loop symbols are homogeneous

polynomials of degree 2L f LT DEF Bf terme

* in six (nhon commutative) variables: a,b,c,d,e,f 9 19

* with integer coefficients, most of them zero 3 636

e 16 aabddd + 48 aabbff - 12 abcece + g 2(13;,223%

* Symmetries and asymptotic properties g 9‘213;2‘;22
translate into constraints: 8| 1671656292

e An gigantic integer programming problem .
oy . . L
* Lots of regularities in the symbol TABLE II. Number of terms in the symbol of F;;™ as a func-
tion of the loop order L.

e Can transformers help?

Experiment 1 : Predicting zeroes

* For Loop 5 and 6, predict whether a term is zero or nonzero
» afdcfdadfe is zero
* aaaeeceaaf is not

Build a 50/50 training sample of zero/non zero terms

Reserve 10k terms for test, they will not be seen at training

* Train the model, and measure performance on the test set (% of correct
prediction)
* Forinput a,f,d,c,fd,a,d,fe predict O
* Forinputa,a,a,e,e,c,e,a,a,fpredict 1

Experiment 1 : Predicting zeroes

* Loop 5 : after training on 300,000 examples (57% of the symbol), the model
predict 99.96% of test examples (not seen during training)

* Loop 6 : after training on 600,000 examples (6% of the symbol), the model
predicts 99.97% of test examples

Experiment 2 : Predicting non-zeroes

100 1

* From keys, sequences of 2L letters, predict
coefficients, integers encoded in base 1000

* For loop 5, models trained on 164k
examples (62% of the symbol), tested on
100k -

* 99.9% accuracy after 58 epochs of 300k examples

* For loop 6, models trained on 1M examples
(20% of the symbol), tested on 100k N

* 98% accuracy after 120 epochs
* BUT a two step learning curve

20 1

0 20 40 60 80 100

Experiment 2 : Predicting non-zeroes

* full prediction, magnitude and sign

Experiment 3 : Learning with less symmetries

* Non zero coefficients
* Must begin with a,b,c and end with d,e,f
* Are invariant by dihedral symmetry
e Cannot have a next to d (b next to e, c next to f)
e Cannot have d next to e or f (e next to d or f)

* Only a few endings are possible:
* 8 “quads” (4 letter endings, up to cyclic symmetry (a,b,c), (d,e,f))
* 93 octuples

Experiment 3 : Learning loop 7 quads

e 7.3 million elements in the
symbol (vs 93 millions in full
representation) "

* Models learn to predict with
98% accuracy

e Same “two step” shape o

Experiment 3 : Learning loop 8 octuples

e 5.6 million elements in the "
symbol (vs 1.7 billions in full
representation)

* Models learn to predict with
94% accuracy

* Attenuated “two step” shape

* Slower learning (600 epochs, vs
200 for quads, and 70 for full
representation)

Take aways from experiments 1-3

* We can use transformers to complete partially calculated loops

* Coefficients are learned with high accuracy
* Even when only a small part of the symbol is available

* A few unintuitive observations happen:
* hardness of learning the sign
* might shed new light on the underlying phenomenon

Experiment 4: predicting the next loop

A loop L element E is a sequence of 2L letters

Strike out 2 of the 2L letters
* From aabd make bd, ad, ab...
* There are L(2L-1) parents, call them P(E)

Try to find a recurrence relation, that predicts the coefficient of E from its parents: E = f(P(E))
* A generalized Pascal triangle/pyramid (in 6 non-commutative variables)

Predict loop 6 from loop 5:
* From 66 integers: loop 5 coefficients
* Predict 1 integer: the loop 6 coefficient
* (NOT the keys: we already know the model can predict coefficients from keys)

98.1% accuracy, no difference between sign (98.4) and magnitude (99.6) accuracy
A function f certainly exists (but we have no idea what it is)

Experiment 4: understanding the recurrence

e To collect information on f, the unknown recurrence, we could
 Remove information about the parents
e See if the model still learns

e Can we use less parents?
* Only strike letters at most k tokens apart; e.g. k=1 only consecutive tokens
e k=2:21 parents, k=1: 11 parents

Accuracy Magnitude accuracy Sign accuracy

Strike two, all parents 98.1 98.4 99.6
Strike two, k=5 98.3 98.6 99.7
Strike two, k=3 98.4 98.7 99.7
Strike two, k=2 98.1 98.3 99.5

Strike two, k=1 94.3 95.2 98.5

Experiment 4: understanding the recurrence

 Shuffling/sorting the parents do not prevent learning
* Coupling between parent/children signs, and magnitudes

Accuracy Magnitude accuracy Sign accuracy

Strike two, all parents 98.1 98.4 99.6
Strike two, k=5 98.3 98.6 99.7
Strike two, k=3 98.4 98.7 99.7
Strike two, k=2 98.1 98.3 99.5
Strike two, k=1 04.3 95.2 98.5
Shuffled parents 95.2 99.1 96.3
Shuffied parents, k=2 93.5 98.1 95.0
Sorted parents, k=5 93.9 95.4 97.9
Parent signs only 93.3 93.5 99.0
Parent magnitudes only 81.8 98.4 83.2

Table 2: Global, magnitude and sign accuracy. Best of four models, trained for about 500 epochs

Next steps

* Better understanding the recurrence relation
* Try building loop 9, or loops for related problems

 Discovering local properties/symmetries in the symbol
* Symbols were calculated by exploiting known symmetries in nature
* If we discover new regularities in the symbols, what does is tell us about nature?
* Antipodal symmetries

Questions for transformers

* Do they learn really learn maths?
* Or are they learning shortcuts, i.e. parroting statistical patterns

* Are the failures predictable and principled?
* Or do models confabulate, and fail at random

* Can their predictions be explained?
* Or are they black boxes?

* Training data are generated, what is the impact their distribution?

Linear algebra with transformers

(Charton 2021)

* Basic linear algebra is learned, with small models
* Transposition: 100% accuracy, up to 30x30 matrices, with 1-layer transformers
* Addition: 99% accuracy, up to 20x20 matrices, 2-layer transformers

e Matrix-vector product: 100% accuracy, up to 10x10 matrices, 2-layer transformers
e Multiplication: 100% accuracy, 5x5 matrices, 1 / 4 layer transformers

 Advanced tasks can also be learned

* Eigenvalues: 100% accuracy for 5x5 to 20x20 matrices

* Eigen decomposition: 97% for 5x5, 82% for 6x6 matrices
e SVD decomposition: 99% accuracy for 4x4 matrices

* Matrix inversion: 90% for 5x5 matrices

Learning to diagonalize

* Given a symmetric matrix M

* Find a vector D and a matrix H such that
HMH' = HMH! = diag(D)

* From examples only, i.e. triplets (M, D, H)

* We know from theory (spectral theorem):
* That D are the eigenvalues (unique up to a permutation)

* That H is unitary, and its rows and columns
e are orthogonal
* have unit norm

Learning to diagonalize

* Train a model to 92% accuracy, test it on 100 000 matrices
* 92 000 correct predictions, 8 000 errors

* In all test cases but 6 (99.99%), the eigenvalues are predicted with
ess than 1% error

* In 98.9% of test cases, all rows and columns of H have unit norm

* The two properties of diagonalization are respected even when the
model fails

e Some maths have been learned

Learning the spectral theorem

* These results hold early in training:
* With a half-trained model, with 70% accuracy
» eigenvalues are correct in 99.6% of test cases,
* rows and columns of H have unit norms in 96.7%.

* For harder cases, on 6x6 matrices, a model only achieves 43%
accuracy, yet

* eigenvalues are correct in 99.6% of test cases
* rows and columns of H have unit norms in 93.1%

* No hallucination: the model always remains “roughly right”

Understanding model failures

* Almost all failures are due to rows and columns of H not being quite
orthogonal

* Eigenvalues, and the norm of eigenvectors are always learned
* The model does not output absurd solutions (aka hallucinations)

* Error can be predicted from the condition number of H (ratio of its
extreme singular values), which should be 1.

e ¢(H) > 1.045 predicts 99.3% of model outcomes (99.9% of successes, and
96.7% of failures)

Understanding model failures - Matrix inversion

e Given a matrix M, predict P such that MP=Id
* M is invertible, so M always exists

* Models struggle to achieve more than 90% accuracy
* They predict PxM-, but we don’t have MP=Id
* |ll-conditioned matrices: a typical difficulty with this task

* The condition number of M (c(M)>66) predicts 98% of model
outcomes (only the input is needed, no need to run the model)

* Our models fail for good mathematical reasons
* Failures are principled and predictable

Computing eigenvalues — out-of-distribution results

* Models are trained on symmetric matrices with independent
coefficients

* Wigner Matrices: eigenvalues are distributed as a semi-circle
* Symmetric around O
* Variance depends on coefficient varianc and matrix dimension
* Bounded support

e Can we generalize to non-Wigner matrices?

Eigenvalues — out-of-distribution generalization

Semi-circle Uniform Gaussian Laplace abs-sc abs-Lapl Marchenko

Semi-circle 100 34 36 39 1 5 0

Uniform 93 100 76 70 92 70 2

Gaussian 100 100 100 100 100 100 99
Laplace 100 100 100 100 100 100 100
Abs-semicircle 0 5 4 4 100 78 20
Abs-Laplace 0 4 5 5 100 100 100
Marchenko-Pastur 0 4 4 4 100 76 100

Table 1: Out-of-distribution generalization. Eigenvalues of 5x5 matrices. Rows are the training distributions,
columns the test distributions.

* Gauss and Laplace generalize to Wigner (but not the other way around)

e Can generalize far away from training distribution: to positive definite
matrices

Eigenvalues — out-of-distribution generalization

e Robust distributions learn faster

Semi-circle Uniform Gaussian Laplace abs-sc abs-Lapl Marchenko

8x8 matrices

Semicircle 0 0 0 0 0 0 0
Uniform 01 100 65 57 89 55 0
Gaussian 100 100 100 99 100 99 41
Laplace 100 100 100 100 100 100 97
Abs-semicircle 0 1 1 0 100 53 0
Abs-Laplace 0 1 1 1 100 100 98
Marchenko-Pastur 0 0 0 0 1 1 20
10x10 matrices

Gaussian (12/1 layers) 100 100 100 98 100 97 3
Laplace (8/1 layers) 100 100 100 100 100 100 74

Table 2: Out-of-distribution generalization. Eigenvalues of 8x8 and 10x10 matrices, accuracy after 36
million examples. Rows are the training distributions, columns the test distributions.

Take aways

* The underlying mathematics are sometimes learned
* You need to investigate failures

e Out-of-distribution generalization is possible

 Special "robust” distributions exist
* Allow for faster learning
* Seem problem independent

Can transformers learn greatest common divisor?

(Charton 2023)

* Train a model on sequences of 4 integers, a,b,c,d

* It can learn to predict if a/b < c/d with 100% accuracy, after just a few
examples

* It will never learn to compute a/b+c/d, or ac/bd
* It cannot even learn to simplify a/b

* Can a transformer learn to compute GCD?

Learning the greatest common divisor

* Generate random pairs of integers between 1 and 1,000,000
 Compute their gcd, train a model to predict it
e Test on a held-out dataset (100k examples)

* Problem space size: 10'?, no chance that the model memorizes all
the cases

* Uniform inputs, no training distribution specificity to exploit

Learning the greatest common divisor

100

* Encoding input/output in base 30 D -

—
* 1-layer transformers, 64 dimensions N r
» 85% accuracy after one epoch (300k
examples)
* 94.6% accuracy after 150 epochs (45M
examples)

40 1

 Surely, the maths are learned

20 1

0 20 40 60 80 100 120 140

Learning the greatest common divisor?

100

* Encoding input/output in base 31 ——

e Accuracy plateaus around 61%
* Accuracy seems base-dependent

60 1

40 1

20 1

0 20 40 60 80 100 120 140

Learning the greatest common divisor???

100

* Top to bottom, bases 30, 6, 10, e ————
2,3,31... —— ; ;
* The gcd should not be base- f:
dependent T
* Are we really learning the N o : o
maths?

40 1

20 1

0 20 40 60 80 100 120 140

Looking at model predictions

Table 3: Model predictions and their frequencies, for GCD 1 to 36. Correct predictions in bold face.

Base 2 Base 10 Base 2 Base 10 Base 2 Base 10
GCD Pred % Pred % GCD Pred % Pred % GCD Pred % Pred %
1 1 100 1 100 13 1 100 1 100 25 1 100 25 100
2 2 100 2 100 14 2 100 2 100 26 2 100 2 100
3 1 100 1 100 15 1 100 5 100 27 1 100 1 100
4 i 100 4 100 16 16 100 16 99.7 28 4 100 4 100
5 1 100 5 100 17 1 100 1 100 29 1 100 1 100
6 2 100 2 100 18 2 100 2 100 30 2 100 10 100
7 1 100 1 100 19 1 100 1 100 31 1 100 1 100
8 8 100 8 100 20 4 100 20 100 32 32 99.9 16 99.9
9 1 100 1 100 21 1 100 1 100 33 1 100 1 100
10 2 100 10 100 22 2 100 2 100 34 2 100 2 100
11 1 100 1 100 23 1 100 1 100 35 1 100 5 100
12 4 100 4 100 24 8 100 8 100 36 4 100 4 100

Learning the greatest common divisor???

* Inbase2,gcd1,2,4,8, 16... are correctly predicted
 The model counts the rightmost zeroes
e 11100 (28)and 1110 (14) have gcd 2
e 111100 (60) and 111000 (56) have gcd 4

The three rules

(R1) Predictions are deterministic. The model predicts a unique value f (k) for almost all (99.9%)
pairs of integers with GCD k. Predictions are correct when f(k) = k.

(R2) Correct predictions are products of primes dividing B. For base 2, they are 1, 2, 4, §, 16,
32 and 64. For base 31, 1 and 31. For base 10, all products of elements from {1, 2,4,8,16}
and {1, 5, 25}. For base 30, all products of {1, 2,4, 8}, {1, 3,9,27}. and {1, 5,25}.

(R3) f(k) is the largest correct prediction that divides k. For instance, f(8) = 8, and f(7) = 1,
for base 2 and 10, but f(15) = 5 for base 10 and f(15) = 1 for base 2.

So far disappointing

Table 2: Number of correct GCD under 100 and accuracy. Best of 6 experiments.

Base 2 3 4 5 6 7 10 11 12 15
Correct GCD 7 5 7 3 19 3 13 2 19 9
Accuracy 81.6 689 814 640 915 625 847 61.8 915 171.7
Base 30 31 60 100 210 211 420 997 1000 1024

Correct GCD 27 2 28 13 32 1 38 1 14 7
Accuracy 947 61.3 950 847 955 613 968 613 847 815

Large bases and grokking

e Base 2023 =7.17.17 § GCD predicted 05 Train loss
* After 10 epochs: 1,7, and 17 are 14 F 07
learned, accuracy 63%, 3 GCD 12 | 0¢
* Atepoch 101, 3 is learned, together ; | 03
with 21 (3.7) and 51 (3.17) s
* At epoch 200, 2 is learned (and 6, ° T
14, 34,42): 11 GCD ¢ ,__U
* Atepoch 600, 4 is learned: 16 GCD, o
93% accuracy "o o o w40 o wo 7w wp 05 w0 o w0 50 w0 7w 99

Figure 5: Learning curves for base B=2023. 3 different model initializations.

Large bases and grokking

This phenomenon is related to grokking, first described by Power. [22] for modular arithmetic. Table 5
presents model predictions for base 1000, which continue to respect rules R1 and R3. In fact, we can
update the three rules into the three rules with grokking:

(G1) Prediction is deterministic. All pairs with the same GCD are predicted the same, as f (k).
(G2) Correct predictions are products of primes divisors of B, and small primes. Small
primes are learned roughly in order, as grokking sets in.

(G3) f(Kk) is the largest correct prediction that divides k.

Large bases and grokking

Base GCD predicted Divisors predicted Non-divisors (epoch learned)
625 = 5% 6 {1,525} 2 (634)

2017 4 {1} 2 (142), 3 (392)

2021 = 43.47 10 {1,43}, {1,47} 2 (125), 3 (228)

2023 = 7.172 16 (1,7}, {1,17} 3 (101), 2 (205), 4 (599)
2025 = 3%.52 28 {1,3,9, 27, 81}, {1,5,25} 2 (217), 4 (493), 8 (832)
2187 = 37 20 {1,3,9,27,81} 2 (86), 4 (315), 5 (650)
2197 = 133 11 {1,13} 2 (62), 3 (170), 4 (799)

2209 = 472 8 {1,47} 2 (111), 3 (260), 9 (937)
2401 = 74 10 {1,7,49} 2 (39), 3 (346)

2401 = 74 14 {1,7,49} 3 (117), 2 (399), 4 (642)
2744 = 2373 30 {1,2,4,8,16,32}, {1,7,49} 3 (543), 5 (1315)

3125 = 5° 16 {1,5,25) 2 (46), 3 (130), 4 (556)

3375 = 33.53 23 {1,3,9,27}, {1,525} 2 (236), 4 (319)

4000 = 25.53 24 {1,2,4,8,16,32}, {1,5,25} 3(599)

4913 =173 17 {1,17} 2 (54), 3 (138), 4 (648), 5 (873)
5000 = 23.5% 28 {1,2,4,8,16,32}, {1,5,25} 3 (205), 9 (886)

10000 = 2%.54 22 {1,2,4,8,16}, {1,5,25} 3(211)

Table 6: Predicted gcd, divisors and non-divisors of B. Best model of 3. For non-divisors, the epoch learned
is the first epoch where model achieves 90% accuracy for this gcd.

Engineering the training distribution

* Training sets have uniformly distributed operands
* 90% of them are over 100 000
* Small GCD, e.g. gcd(6,9) are never seen
* This is not how we are taught / teach arithmetic
* From easy cases that we sometimes learn by rote
* Generalizing to harder cases once easy cases are mastered
e Curriculum learning has draw backs: the distribution changes over time
* Learn the easy cases, but then forget them

Engineering the training distribution

* Log-uniform operands "
 k appears with probability 1/k 60| 10

* As many 1-digit numbers as 6-digit
* No impact on the outcome distribution (1/k?)
 No impact on the test sets

e Learning is noisier, but more GCD are learned 2

0% 200 400 600 800 1000
Epochs
Figure 3: Learning curves, Log-uniform

training set.

Engineering the training distribution

* Log-uniform operands, fast grokking
e All primes up to 23

Table 6: Accuracy and correct GCD (up to 100), log-uniform operands. Best of three models, trained for
1000 epochs (300M examples). All models are tested on 100,000 pairs, uniformly distributed between 1 and 10°.

Base Accuracy Correct GCD | Base Accuracy GCD | Base Accuracy GCD

2 94.4 25 60 98.4 60 2025 99.0 70
3 96.5 36 100 98.4 60 2187 98.7 66
4 98.4 58 210 98.5 60 2197 98.8 68
5 97.0 42 211 96.9 41 2209 98.6 65
6 96.9 39 420 98.1 59 | 2401 99.1 73
7 96.8 40 625 98.2 57 2744 98.9 72
10 97.6 48 997 98.3 64 3125 98.6 65
11 97.4 43 1000 99.1 71 3375 98.8 67
12 98.2 55 1024 99.0 71 4000 98.7 66
15 97.8 52 2017 98.6 63 4913 98.2 57
30 98.2 56 2021 98.6 66 5000 98.6 64
31 97.2 44 2023 98.7 65 10000 98.0 56

Learning large primes, the outcome distribution

e GCD are distributed in 1/k?, very few examples with large primes
* Alog-uniform distribution of operands and outcomes
e All primes up to 53

Base Accuracy Correct GCD | Base Accuracy GCD | Base Accuracy GCD

2 16.5 17 60 96.4 75 2025 97.9 91
3 93.7 51 100 97.1 78 2187 97.8 91
4 91.3 47 210 96.2 80 2197 97.6 90
5 92.2 58 211 95.3 67 2209 97.6 87
6 95.2 56 420 96.4 88 2401 97.8 89
7 93.0 63 625 96.0 80 2744 97.6 91
10 94.3 65 997 97.6 83 3125 97.7 91
11 94.5 57 1000 97.9 91 3375 97.6 91
12 95.0 70 1024 98.1 90 | 4000 97.3 90
15 95.4 62 2017 97.6 88 4913 97.1 88
30 95.8 72 2021 98.1 89 5000 97.1 89
31 94.4 64 2023 97.5 88 10000 95.2 88

Table 9: Accuracy and correct GCD, log-uniform operands and outcomes. Best model of 3.

Take aways

* Predictions can be deterministic and explainable

* The model learns a sieve:
* |t classifies input pairs (a,b) into clusters with common divisors

* And predicts the smallest common divisor in the class (when outcomes are
not uniformly distributed)

* Training distribution impact accuracy, no matter the test distribution

Conclusions

* Transformers can learn mathematics
A new field for research
* With applications to science

* Mathematical tasks help understand deep learning and transformers

