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Mathematics as translation

• Train models to translate problems, encoded as sentences in some 
language, into their solutions

• 7+9  => 16

• x2-x-1 =>
1+ 5

2
,
1− 5

2



Maths as translation: learning GCD

• Two integers a=10, b=32, and their GCD gcd(a,b)=2

• Can be encoded as sequences of digits in base 10: 
• ‘+’, ‘1’, ‘0’ 

• ‘+’, ‘3’, ‘2’

• ‘+’, ‘2’

• Translate ‘+’,‘1’,‘0’,‘+’,‘3’,‘2’ into ‘+’, ‘2’
• From examples only

• As a “pure language” problem: the model knows no maths



This works!

• Symbolic integration / Solving ODE:
• Deep learning for symbolic mathematics (2020): Lample & Charton (ArXiv 1912.01412)

https://arxiv.org/abs/1912.01412

• Dynamical systems:
• Learning advanced computations from examples (2021) : Charton, Hayat & Lample (ArXiv 2006.06462)
• Discovering Lyapunov functions with transformers (2023) : Alfarano, Charton, Hayat (3rd MATH&AI workshop, NeurIPS)

• Symbolic regression:
• Deep symbolic regression for recurrent sequences (2022) : d’Ascoli, Kamienny, Lample, Charton (ArXiv 2201.04600)
• End-to-end symbolic regression with transformers (2022) : Kamienny, d’Ascoli, Lample, Charton (ArXiv 2204.10532)

• Cryptanalysis of post-quantum cryptography:
• SALSA: attacking lattice cryptography with transformers (2022): Wenger, Chen, Charton, Lauter (ArXiv 2207.04785)
• SALSA PICANTE (2023) Li, Sotakova, Wenger, Mahlou, Garcelon, Charton, Lauter (ArXiv 2303.0478)
• SALSA VERDE (2023) Li, Wenger, Zhu, Charton, Lauter (ArXiv 2306.11641)

• Theoretical physics
• Transformers for scattering amplitudes (2023): Merz, Cai, Charton, Nolte, Wilhelm, Cranmer, Dixon (ML4PS Workshop, NeurIPS)

• Quantum computing
• Using transformer to simplify ZX diagrams (2023) (3rd MATH&AI Workshop, NeurIPS)

https://arxiv.org/abs/1912.01412


Why do this?

• A challenge: like Go, like Chess
• “When computers can do XXX, we will have artificial intelligence” 

• A pre-requisite for AI for Science
• No maths no science

• A framework for understanding transformers 
• and deep learning 

• and perhaps some science



Problem solving as translation

I. Symbolic integration: an initial example

II. Scattering amplitudes: an application to theoretical physics

III. Eigenvalues and GCD: robutsness and explainability



Deep learning for symbolic mathematics (2019)

• Train transformer to compute symbolic integrals

• Undergrad mathematics

• Not trivial for mathematicians

• Hard for machines (Risch algorithm)



Deep learning for symbolic mathematics (2019)

• Three steps

• Represent problems and solutions as sequences

• Generate large sets of problems and solutions

• Train transformers to translate problems into solutions



Expressions as trees



Trees as sequences

• Polish notation (aka pre-order 
enumeration)

• Begin from root

• Parent before child

• Children from left to right

+  2  x  3  +  5  2



Expressions as sequences

Ready for the transformer!

+  2  *  3  +  5  2

+   *   3   pow 𝓍 2   - cos   *   2   𝓍 1

- 𝜕 𝜕 𝜓 𝓍 𝓍 *   /   1   pow  𝜈 2 𝜕 𝜕 𝜓 t   t



Generating data – three approaches

• Forward 
• Generate a random function f

• Compute its integral F

• Backward
• Generate a random function F

• Compute its derivative f

• Integration by part
• Generate random functions F and G

• Compute their derivative f and g

• If fG is in the dataset, we get Fg for free using 



Generating data

• How to generate a random function?
• Generate a random tree

• Randomly select operators for its nodes

• Constants and small integers for its leaves

• Why three training sets?
• Different generating procedures explore different parts of the problem space 



Generating data



Generating data



Generating data



Three training sets

• Expressions with up to 15 operators
• Operators are the 4 basic operation (+-*%), and elementary functions 

(Liouville): exp, log, sqrt, pow, sin, cos, tan, sinh, cosh, tanh and their
inverses

• Coefficients are integers between -5 and 5



Training models

• 6-layer encoder-decoder transformers with 256 dimensions and 
8 attention heads

• The model is trained on generated data
• Supervised learning, minimizing cross-entropy

• A pure language task: the model has no understanding of maths

• Tested on held-out data (i.e. not seen during training)

• Solutions are verified with an external tool (SymPy)
• Using problem-related mathematical metrics



In-domain results
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• Performance on held-out test sets with the same distribution as training

• Almost 100% no matter the generation procedure

• Outperforms best computer algebras



Limitations : distribution woes

• Generated data: training and test examples come from the same 
generator

• What if they don’t?
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Generating data



Generating data



Distribution woes

• IPB stands “in-between” FWD and BWD: better generalization

• Training distribution matters

• Out-of-distribution generalization is possible so long test distribution is not ‘too 
far’
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Take aways

• Symbolic mathematics can be learned from examples only

• In-domain, we achieve comparable performance with computer 
algebras (Mathematica)

• Out of distribution generalization is hard

• Training distribution matters
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Transformers for scattering amplitudes (2023)
(Cai, Merz, Nolte, Wilhelm, Cranmer, Dixon, Charton)

• Scattering amplitudes: complex functions predicting the outcome of 
particle interactions

• Computed by summing Feynman diagrams of increasing complexity
• loops: virtual particles created and destroyed in the process

• A hard problem: each loop introduces two latent variables, their 
integration give rise to generalized polylogarithms
• For the standard model the best computational techniques only reach loop 3



Amplitude bootstrap (Dixon, Wilhelm)

• Polylogarithms have many algebraic properties
• Leverage them to predict the structure of the solution, up to some 

coefficients

• Compute the coefficients from symmetry consideration, known limit values, 
etc.

• In Planar N=4 supersymmetric Yang-Mills, solutions are “simple”
• Calculated from symbols: homogeneous polynomials, degree 2L (L=loop), 

with integer coefficients



The three-gluon form factor

• Three gluons and a massless Higgs

• Loop symbols are homogeneous 
polynomials of degree 2L
• in six (non commutative) variables: a,b,c,d,e,f
• with integer coefficients, most of them zero
• 16 aabddd + 48 aabbff - 12 abcece + ....

• Symmetries and asymptotic properties 
translate into constraints:
• An gigantic integer programming problem
• Lots of regularities in the symbol

• Can transformers help?



Experiment 1 : Predicting zeroes

• For Loop 5 and 6, predict whether a term is zero or nonzero
• afdcfdadfe is zero

• aaaeeceaaf is not

• Build a 50/50 training sample of zero/non zero terms

• Reserve 10k terms for test, they will not be seen at training

• Train the model, and measure performance on the test set (% of correct 
prediction)
• For input a,f,d,c,f,d,a,d,f,e predict 0

• For input a,a,a,e,e,c,e,a,a,f predict 1



Experiment 1 : Predicting zeroes

• Loop 5 : after training on 300,000 examples (57% of the symbol), the model 
predict 99.96% of test examples (not seen during training)

• Loop 6 : after training on 600,000 examples (6% of the symbol), the model 
predicts 99.97% of test examples



Experiment 2 : Predicting non-zeroes

• From keys, sequences of 2L letters, predict 
coefficients, integers encoded in base 1000

• For loop 5, models trained on 164k 
examples (62% of the symbol), tested on 
100k
• 99.9% accuracy after 58 epochs of 300k examples

• For loop 6, models trained on 1M examples 
(20% of the symbol), tested on 100k
• 98% accuracy after 120 epochs

• BUT a two step learning curve



Experiment 2 : Predicting non-zeroes

• full prediction, magnitude and sign



Experiment 3 : Learning with less symmetries

• Non zero coefficients
• Must begin with a,b,c and end with d,e,f

• Are invariant by dihedral symmetry

• Cannot have a next to d (b next to e, c next to f)

• Cannot have d next to e or f (e next to d or f)

• Only a few endings are possible:
• 8 “quads” (4 letter endings, up to cyclic symmetry (a,b,c), (d,e,f))

• 93 octuples



Experiment 3 : Learning loop 7 quads

• 7.3 million elements in the 
symbol (vs 93 millions in full 
representation)

• Models learn to predict with 
98% accuracy

• Same “two step” shape



Experiment 3 : Learning loop 8 octuples

• 5.6 million elements in the 
symbol (vs 1.7 billions in full 
representation)

• Models learn to predict with 
94% accuracy

• Attenuated “two step” shape

• Slower learning (600 epochs, vs 
200 for quads, and 70 for full 
representation)



Take aways from experiments 1-3 

• We can use transformers to complete partially calculated loops

• Coefficients are learned with high accuracy
• Even when only a small part of the symbol is available

• A few unintuitive observations happen: 
• hardness of learning the sign

• might shed new light on the underlying phenomenon



Experiment 4: predicting the next loop

• A loop L element E is a sequence of 2L letters

• Strike out 2 of the 2L letters
• From aabd make bd, ad, ab...
• There are L(2L-1) parents, call them P(E)

• Try to find a recurrence relation, that predicts the coefficient of E from its parents: E = f(P(E))
• A generalized Pascal triangle/pyramid (in 6 non-commutative variables)

• Predict loop 6 from loop 5:
• From 66 integers: loop 5 coefficients
• Predict 1 integer: the loop 6 coefficient
• (NOT the keys: we already know the model can predict coefficients from keys)

• 98.1% accuracy, no difference between sign (98.4) and magnitude (99.6) accuracy

• A function f certainly exists (but we have no idea what it is)



Experiment 4: understanding the recurrence

• To collect information on f, the unknown recurrence, we could
• Remove information about the parents
• See if the model still learns

• Can we use less parents?
• Only strike letters at most k tokens apart; e.g. k=1 only consecutive tokens
• k=2: 21 parents, k=1: 11 parents



Experiment 4: understanding the recurrence

• Shuffling/sorting the parents do not prevent learning

• Coupling between parent/children signs, and magnitudes



Next steps

• Better understanding the recurrence relation
• Try building loop 9, or loops for related problems

• Discovering local properties/symmetries in the symbol
• Symbols were calculated by exploiting known symmetries in nature

• If we discover new regularities in the symbols, what does is tell us about nature?

• Antipodal symmetries



Questions for transformers

• Do they learn really learn maths?
• Or are they learning shortcuts, i.e. parroting statistical patterns

• Are the failures predictable and principled? 
• Or do models confabulate, and fail at random

• Can their predictions be explained?
• Or are they black boxes?

• Training data are generated, what is the impact their distribution?



Linear algebra with transformers
(Charton 2021)

• Basic linear algebra is learned, with small models
• Transposition: 100% accuracy, up to 30x30 matrices, with 1-layer transformers

• Addition: 99% accuracy, up to 20x20 matrices, 2-layer transformers

• Matrix-vector product: 100% accuracy, up to 10x10 matrices, 2-layer transformers 

• Multiplication: 100% accuracy, 5x5 matrices, 1 / 4 layer transformers

• Advanced tasks can also be learned
• Eigenvalues: 100% accuracy for 5x5 to 20x20 matrices

• Eigen decomposition: 97% for 5x5, 82% for 6x6 matrices 

• SVD decomposition: 99% accuracy for 4x4 matrices 

• Matrix inversion: 90% for 5x5 matrices



Learning to diagonalize

• Given a symmetric matrix M

• Find a vector D and a matrix H such that 

HMHT = HMH-1 = diag(D)

• From examples only, i.e. triplets (M, D, H)

• We know from theory (spectral theorem):
• That D are the eigenvalues (unique up to a permutation)
• That H is unitary, and its rows and columns 

• are orthogonal
• have unit norm 



Learning to diagonalize

• Train a model to 92% accuracy, test it on 100 000 matrices
• 92 000 correct predictions, 8 000 errors

• In all test cases but 6 (99.99%), the eigenvalues are predicted with 
less than 1% error

• In 98.9% of test cases, all rows and columns of H have unit norm

• The two properties of diagonalization are respected even when the 
model fails

• Some maths have been learned



Learning the spectral theorem

• These results hold early in training: 
• With a half-trained model, with 70% accuracy
• eigenvalues are correct in 99.6% of test cases, 
• rows and columns of H have unit norms in 96.7%.

• For harder cases, on 6x6 matrices, a model only achieves 43% 
accuracy, yet
• eigenvalues are correct in 99.6% of test cases
• rows and columns of H have unit norms in 93.1%

• No hallucination: the model always remains “roughly right”



Understanding model failures

• Almost all failures are due to rows and columns of H not being quite 
orthogonal

• Eigenvalues, and the norm of eigenvectors are always learned

• The model does not output absurd solutions (aka hallucinations)

• Error can be predicted from the condition number of H (ratio of its 
extreme singular values), which should be 1.
• c(H) > 1.045 predicts 99.3%  of model outcomes (99.9% of successes, and  

96.7% of failures) 



Understanding model failures - Matrix inversion

• Given a matrix M, predict P such that MP≈Id
• M is invertible, so M-1 always exists

• Models struggle to achieve more than 90% accuracy
• They predict P≈M-1, but we don’t have MP≈Id

• Ill-conditioned matrices: a typical difficulty with this task

• The condition number of M (c(M)>66) predicts 98% of model 
outcomes (only the input is needed, no need to run the model)

• Our models fail for good mathematical reasons

• Failures are principled and predictable



Computing eigenvalues – out-of-distribution results

• Models are trained on symmetric matrices with independent  
coefficients

• Wigner Matrices: eigenvalues are distributed as a semi-circle
• Symmetric around 0

• Variance depends on coefficient varianc and matrix dimension

• Bounded support

• Can we generalize to non-Wigner matrices?



Eigenvalues – out-of-distribution generalization

• Gauss and Laplace generalize to Wigner (but not the other way around)

• Can generalize far away from training distribution: to positive definite 
matrices



Eigenvalues – out-of-distribution generalization

• Robust distributions learn faster



Take aways

• The underlying mathematics are sometimes learned
• You need to investigate failures

• Out-of-distribution generalization is possible

• Special ”robust” distributions exist
• Allow for faster learning

• Seem problem independent



Can transformers  learn greatest common divisor?
(Charton 2023)

• Train a model on sequences of 4 integers, a,b,c,d
• It can learn to predict if a/b < c/d with 100% accuracy, after just a few 

examples

• It will never learn to compute a/b+c/d, or ac/bd

• It cannot even learn to simplify a/b

• Can a transformer learn to compute GCD?



Learning the greatest common divisor

• Generate random pairs of integers between 1 and 1,000,000

• Compute their gcd, train a model to predict it

• Test on a held-out dataset (100k examples)

• Problem space size: 1012 , no chance that the model memorizes all 
the cases

• Uniform inputs, no training distribution specificity to exploit



Learning the greatest common divisor

• Encoding input/output in base 30

• 1-layer transformers, 64 dimensions

• 85% accuracy after one epoch (300k 
examples)

• 94.6% accuracy after 150 epochs (45M 
examples) 

• Surely, the maths are learned



Learning the greatest common divisor?

• Encoding input/output in base 31

• Accuracy plateaus around 61%

• Accuracy seems base-dependent



Learning the greatest common divisor???

• Top to bottom, bases 30, 6, 10, 
2, 3, 31…

• The gcd should not be base-
dependent

• Are we really learning the 
maths?



Looking at model predictions



Learning the greatest common divisor???

• In base 2, gcd 1,2,4,8, 16… are correctly predicted
• The model counts the rightmost zeroes

• 11100 (28) and 1110 (14) have gcd 2
• 111100 (60) and 111000 (56) have gcd 4



The three rules



So far disappointing



Large bases and grokking

• Base 2023 = 7.17.17
• After 10 epochs: 1,7, and 17 are 

learned, accuracy 63%, 3 GCD
• At epoch 101, 3 is learned, together 

with 21 (3.7) and 51 (3.17)
• At epoch 200, 2 is learned (and 6, 

14, 34, 42): 11 GCD
• At epoch 600, 4 is learned: 16 GCD, 

93% accuracy



Large bases and grokking



Large bases and grokking



Engineering the training distribution

• Training sets have uniformly distributed operands
• 90% of them are over 100 000
• Small GCD, e.g. gcd(6,9) are never seen

• This is not how we are taught / teach arithmetic
• From easy cases that we sometimes learn by rote
• Generalizing to harder cases once easy cases are mastered

• Curriculum learning has draw backs: the distribution changes over time
• Learn the easy cases, but then forget them



Engineering the training distribution

• Log-uniform operands
• k appears with probability 1/k
• As many 1-digit numbers as 6-digit

• No impact on the outcome distribution (1/k2)
• No impact on the test sets

• Learning is noisier, but more GCD are learned



Engineering the training distribution

• Log-uniform operands, fast grokking
• All primes up to 23



Learning large primes, the outcome distribution

• GCD are distributed in 1/k2, very few examples with large primes
• A log-uniform distribution of operands and outcomes 

• All primes up to 53



Take aways

• Predictions can be deterministic and explainable

• The model learns a sieve:
• It classifies input pairs (a,b) into clusters with common divisors

• And predicts the smallest common divisor in the class (when outcomes are 
not uniformly distributed)

• Training distribution impact accuracy, no matter the test distribution



Conclusions

• Transformers can learn mathematics
• A new field for research

• With applications to science

• Mathematical tasks help understand deep learning and transformers


