
Thinking Like Transformers

Gail Weiss, Yoav Goldberg, Eran Yahav
13945 + 2903482

2917427

 ?????

Transformers

Highly parallel architecture

Strong performance

Transformers

Transformers

Encoder

Decoder

Transformers

Encoder

Decoder
very similar to the encoder but:

- has a mask on the “attention”

- reads also from the decoder

Transformers

Encoder

Decoder

an encoder-decoder pair can be trained to work
together to solve tasks such as translation or

summarisation

very similar to the encoder but:

- has a mask on the “attention”

- reads also from the decoder

very often you will see them independently…

Transformers

Encoder

Decoder

Example: BERT

Held sota on multiple NLP

 leaderboards

(now has more competition…)

Transformers

Encoder

Decoder

Held sota on multiple NLP

 leaderboards

(now has more competition…)

Example: BERT

Example: The GPT family of transformers

Improving Language Understanding by Generative
Pre-Training

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever

Transformers
How do they think?????

x+5=11. What is x?

Cool! How did you do that?

Transformers

Encoder

Held sota on multiple NLP

 leaderboards

(now has more competition…
eg XLNet)

used in Google search!

Example: BERT

(understanding decoders will be very simple after encoders)

We will focus on
encoders

How do they think?

Motivation: Transformer Encoders

We’re figuring out all kinds of things…

We’re figuring out all kinds of things…

…but that’s not how they *think*!

Motivation: Transformer Encoders
How do they think?

We’re figuring out all kinds of things…

…but that’s not how they *think*!

Motivation: Transformer Encoders
How do they think?

We’re figuring out all kinds of things…

…but that’s not how they *think*!

Motivation: Transformer Encoders
How do they think?

We’re figuring out all kinds of things…

…but that’s not how they *think*!

Motivation: Transformer Encoders
How do they think?

We’re figuring out all kinds of things…

…but that’s not how they *think*!

Motivation: Transformer Encoders
How do they think?

Teaser: Reverse

abcde

edcba

 ?????

Motivation: What RNNs have

H
idden State

RNN
cell

H
idden State

RNN
cell

H
idden State

RNN
cell …

Initial State

O
utput Vector

x0 x1 x2

Computational
Model(s)!

Deterministic
Finite Automata (DFAs)

Motivation: What RNNs have

H
idden State

RNN
cell

H
idden State

RNN
cell

H
idden State

RNN
cell …

Initial State

O
utput Vector

x0 x1 x2

Computational
Model(s)!

Deterministic
Finite Automata (DFAs)

Motivation: What RNNs have

H
idden State

RNN
cell

H
idden State

RNN
cell

H
idden State

RNN
cell …

Initial State

O
utput Vector

x0 x1 x2

Computational
Model(s)!

Deterministic
Finite Automata (DFAs)

Motivation: What RNNs have

H
idden State

RNN
cell

H
idden State

RNN
cell

H
idden State

RNN
cell …

Initial State

O
utput Vector

x0 x1 x2

Computational
Model(s)!

Deterministic
Finite Automata (DFAs)

Motivation: What RNNs have

H
idden State

RNN
cell

H
idden State

RNN
cell

H
idden State

RNN
cell …

Initial State

O
utput Vector

x0 x1 x2

Computational
Model(s)!

Deterministic
Finite Automata (DFAs)

Motivation: What RNNs have

H
idden State

RNN
cell

H
idden State

RNN
cell

H
idden State

RNN
cell …

Initial State

O
utput Vector

x0 x1 x2

Computational
Model(s)!

Deterministic
Finite Automata (DFAs)

Motivation: What RNNs have

H
idden State

RNN
cell

H
idden State

RNN
cell

H
idden State

RNN
cell …

Initial State

O
utput Vector

x0 x1 x2

Computational
Model(s)!

Deterministic
Finite Automata (DFAs)

Motivation: What RNNs have

H
idden State

RNN
cell

H
idden State

RNN
cell

H
idden State

RNN
cell …

Initial State

O
utput Vector

x0 x1 x2

Computational
Model(s)!

Deterministic
Finite Automata (DFAs)

Accepting stateRejecting state

Motivation: What RNNs have

H
idden State

RNN
cell

H
idden State

RNN
cell

H
idden State

RNN
cell …

Initial State

O
utput Vector

x0 x1 x2

Computational
Model(s)!

Deterministic
Finite Automata (DFAs)

Motivation: What RNNs have

H
idden State

RNN
cell

H
idden State

RNN
cell

H
idden State

RNN
cell …

Initial State

O
utput Vector

x0 x1 x2

Computational
Model(s)!

Deterministic
Finite Automata (DFAs)

Motivation: What RNNs have

H
idden State

RNN
cell

H
idden State

RNN
cell

H
idden State

RNN
cell …

Initial State

O
utput Vector

x0 x1 x2

Extraction!

Computational
Model(s)!

Spectral extraction:

RNNs to WFAs

DFA extraction:

Clustering

DFA and WDFA extraction:

L-star variants

Deterministic
Finite Automata (DFAs)

Motivation: What RNNs have

H
idden State

RNN
cell

H
idden State

RNN
cell

H
idden State

RNN
cell …

Initial State

O
utput Vector

x0 x1 x2

Extraction! Analysis of Expressive Power!

Computational
Model(s)!

2-RNNs are WFAs

LSTMs are counter machines

GRUs are DFAs

Spectral extraction:

RNNs to WFAs

DFA extraction:

Clustering

DFA and WDFA extraction:

L-star variants

Deterministic
Finite Automata (DFAs)

Motivation: What RNNs have

H
idden State

RNN
cell

H
idden State

RNN
cell

H
idden State

RNN
cell …

Initial State

O
utput Vector

x0 x1 x2

Extraction! Analysis of Expressive Power! Inspiration from existing theory!

Computational
Model(s)!

Stack-RNNs2-RNNs are WFAs

LSTMs are counter machines

GRUs are DFAs

Spectral extraction:

RNNs to WFAs

DFA extraction:

Clustering

DFA and WDFA extraction:

L-star variants

Deterministic
Finite Automata (DFAs)

Motivation: What RNNs have

H
idden State

RNN
cell

H
idden State

RNN
cell

H
idden State

RNN
cell …

Initial State

O
utput Vector

x0 x1 x2

Extraction! Analysis of Expressive Power! Inspiration from existing theory!

Computational
Model(s)!

Transformer

Stack-RNNs2-RNNs are WFAs

LSTMs are counter machines

GRUs are DFAs

Spectral extraction:

RNNs to WFAs

DFA extraction:

Clustering

DFA and WDFA extraction:

L-star variants

Deterministic
Finite Automata (DFAs)

(References for the Interested)

H
idden State

RNN
cell

H
idden State

RNN
cell

H
idden State

RNN
cell …

Initial State

O
utput Vector

x0 x1 x2

Extraction! Analysis of Expressive Power! Inspiration from existing theory!

Computational
Model(s)!

Explaining Black Boxes on

Sequential Data using Weighted Automata

Deterministic
Finite Automata (DFAs)

Extraction of Rules from Discrete-
Time Recurrent Neural Networks

Extracting Automata from Recurrent
Neural Networks Using Queries and

Counterexamples

Connecting Weighted Automata and
Recurrent Neural Networks through

Spectral Learning

On the Practical Computational
Power of Finite Precision RNNs for

Language Recognition

A Formal Hierarchy of RNN
Architectures

Sequential Neural Networks as
Automata

Inferring Algorithmic Patterns with
Stack-Augmented Recurrent Nets

Learning to Transduce with
Unbounded Memory

But what are Transformer-Encoders?

H
idden State

RNN
cell

H
idden State

RNN
cell

H
idden State

RNN
cell …

Initial State

O
utput Vector

x0 x1 x2

Computational
Model(s)!

?
Any ideas?

Transformer-
Encoder

Teaser: Reverse

abcde

edcba

 ?????

Transformer Encoders

Transformer Encoders

• Receive their entire input ‘at
once’, processing all tokens in
parallel

• Have multiple layers, such that
the output of one is the input of
the next

Transformer Encoders

• Receive their entire input ‘at
once’, processing all tokens in
parallel

• Have a fixed number of layers,
where the output of one is the
input of the next

Transformer Encoders

• Receive their entire input ‘at
once’, processing all tokens in
parallel

• Have a fixed number of layers,
where the output of one is the
input of the next

Computation “progresses” along network depth… not input length

39

Transformers

Encoder Layer 1

x1 x2 x3

Layer input/outputs are “variables” of a transformer “program”
The layers themselves are “operations”

p(0) p(1) p(2)e(I) e(Like) e(dogs)

y1
1 y1

2 y1
3

Encoder Layer L

yL
1 yL

2 yL
3

I Like Dogs
tokens = positionwise_embeddings(input)

indices = positionwise_indices(input)

 = tokens+indices

 = ()

 = ()

…

 = = ()

x

y1 L1 x

y2 L2 y1

y yL LL yL−1

…

40

RASP (Restricted Access Sequence Processing)

41

RASP (Restricted Access Sequence Processing)
• A transformer-encoder is a sequence to sequence function (“sequence operator”, or, “s-op”)

• Its layers apply operations to the sequences

• RASP builds s-ops, constrained to a transformer’s inputs and possible operations

• (The s-ops are the transformer abstractions!)

I

Like

Dogs
Positional

Embedding

p(0)
p(1)
p(2)

dx

Word
Embedding

e(I)
e(Like)
e(dogs)

dx

RASP base s-ops
The information before a

transformer has done anything

(“0 layer transformer”)

I

Like

Dogs
Positional

Embedding

p(0)
p(1)
p(2)

dx

Word
Embedding

e(I)
e(Like)
e(dogs)

dx

RASP base s-ops
The information before a

transformer has done anything

(“0 layer transformer”)

tokens and indices are RASP built-ins:

The RASP REPL gives you
examples (until you ask it not to)

I

Like

Dogs
Positional

Embedding

p(0)
p(1)
p(2)

dx

Word
Embedding

e(I)
e(Like)
e(dogs)

dx tokens and indices are RASP built-ins:

The information before a
transformer has done anything

(“0 layer transformer”)

RASP base s-ops

Okay, now what?

To know what operations RASP may have, we must
inspect the transformer-encoder layers!

Transformer-Encoder Layer
Input

x1

x2

x3

dx

Multi-Head Attention A

Linear

Transformation

Residual

(“Skip”)

Connection
Layer

Norm 1

 o1

 o2

 o3

dx

Wff
1

 o′ 1

 o′ 2

 o′ 3

dx

 ff1
 ff2
 ff3

dff

Wff
2

 o′ ′ 1

 o′ ′ 2

 o′ ′ 3

dx

ReLU

Residual

(“Skip”)

Connection

Layer
Norm 2

Output

out1
out2
out3

dx

Feed-Forward Sublayer
There’s a lot in here…

Multi-Head Attention A

Linear

Transformation

Residual

(“Skip”)

Connection
Layer

Norm 1

 o1

 o2

 o3

dx

 o′ 1

 o′ 2

 o′ 3

dx

 o′ ′ 1

 o′ ′ 2

 o′ ′ 3

dx

Residual

(“Skip”)

Connection

Layer
Norm 2

Output

out1
out2
out3

dx

Wff
1

 ff1
 ff2
 ff3

dff

Wff
2ReLU

Feed-Forward Sublayer

Input

x1

x2

x3

dx

Feed-Forward Sublayer

Multi-Head Attention A

Linear

Transformation

Residual

(“Skip”)

Connection
Layer

Norm 1

 o1

 o2

 o3

dx

 o′ 1

 o′ 2

 o′ 3

dx

 o′ ′ 1

 o′ ′ 2

 o′ ′ 3

dx

Residual

(“Skip”)

Connection

Layer
Norm 2

Output

out1
out2
out3

dx

Wff
1

 ff1
 ff2
 ff3

dff

Wff
2ReLU

Feed-Forward Sublayer

Input

x1

x2

x3

dx

Feed-Forward Sublayer

Multilayer Feedforward Networks are
Universal Approximators (Hornik et al,

1989)

Feed-Forward gives us (Many) Elementwise
Operations

So far

Are we all-powerful
(well, transformer-powerful) yet?

Input

x1

x2

x3

dx

Multi-Head Attention A

Linear

Transformation

Residual

(“Skip”)

Connection
Layer

Norm 1

 o1

 o2

 o3

dx

Wff
1

 o′ 1

 o′ 2

 o′ 3

dx

 ff1
 ff2
 ff3

dff

Wff
2

 o′ ′ 1

 o′ ′ 2

 o′ ′ 3

dx

ReLU

Residual

(“Skip”)

Connection

Layer
Norm 2

Output

out1
out2
out3

dx

Feed-Forward Sublayer

Transformer-Encoder Layer

A

Linear

Transformation

Residual

(“Skip”)

Connection
Layer

Norm 1

 o1

 o2

 o3

dx

 o′ 1

 o′ 2

 o′ 3

dx

 o′ ′ 1

 o′ ′ 2

 o′ ′ 3

dx

Residual

(“Skip”)

Connection

Layer
Norm 2

Output

out1
out2
out3

dx

Wff
1

 ff1
 ff2
 ff3

dff

Wff
2ReLU

Feed-Forward Sublayer

Attention Sublayer
Multi-Head Attention

Input

x1

x2

x3

dx

elementwise

elementwise

Attention is all you need!

Background - Multi Head Attention

Starting from single-head attention…

Background - Self Attention (Single Head)
input

 x1

 x2

 x3

dx

Q

K

input

 x1

 x2

 x3

dx

dk

dk

 q1

 q2

 q3

 k1

 k2

 k3

Background - Self Attention (Single Head)

Q

K

input

 x1

 x2

 x3

dx

dk

dk

 q1

 q2

 q3

 k1

 k2

 k3

Background - Self Attention (Single Head)

Q

K

input

 x1

 x2

 x3

dx

dk

dk

 q1

 q2

 q3

 k1

 k2

 k3

q1 ⋅ k1

Background - Self Attention (Single Head)
scores

Q

K

input

 x1

 x2

 x3

dx

dk

dk

 q1

 q2

 q3

 k1

 k2

 k3

q1 ⋅ k1 q1 ⋅ k2

Background - Self Attention (Single Head)
scores

Q

K

input

 x1

 x2

 x3

dx

dk

dk

 q1

 q2

 q3

 k1

 k2

 k3

scores

q1 ⋅ k1 q1 ⋅ k2 q1 ⋅ k3

Background - Self Attention (Single Head)

Q

K

input

 x1

 x2

 x3

dx

dk

dk

 k1

 k2

 k3

normalise (i.e.)× 1/ dk

softmax

scores

 q1

 q2

 q3

w1,1 w1,2 w1,3

weights

q1 ⋅ k1 q1 ⋅ k2 q1 ⋅ k3

Background - Self Attention (Single Head)

Q

K

V

input

 x1

 x2

 x3

dx

dk

dk

dv

 k1

 k2

 k3

q1 ⋅ k1 q1 ⋅ k2 q1 ⋅ k3

w1,1 w1,2 w1,3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

Background - Self Attention (Single Head)

 v1

 v2

 v3

Q

K

V

input

 x1

 x2

 x3

 out1

dx

dk

dk

dv

 k1

 k2

 k3

q1 ⋅ k1 q1 ⋅ k2 q1 ⋅ k3

w1,1 w1,2 w1,3

 v1

 v2

 v3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

dv

Background - Self Attention (Single Head)

Q

K

V

input

 x1

 x2

 x3

 out2

dx

dk

dk

dv

 k1

 k2

 k3

q2 ⋅ k1 q2 ⋅ k2 q2 ⋅ k3

w2,1 w2,2 w2,3

 v1

 v2

 v3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

 out1

dv

Background - Self Attention (Single Head)

Q

K

V

input

 x1

 x2

 x3

 out3

dx

dk

dk

dv

 k1

 k2

 k3

q3 ⋅ k1 q3 ⋅ k2 q3 ⋅ k3

w3,1 w3,2 w3,3

 v1

 v2

 v3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

 out2

 out1

dv

Background - Self Attention (Single Head)

Q

K

V

input

 x1

 x2

 x3

dx

dk

dk

dv

 k1

 k2

 k3

q3 ⋅ k1 q3 ⋅ k2 q3 ⋅ k3

w3,1 w3,2 w3,3

 v1

 v2

 v3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

 out3

 out2

 out1

dv

Attention Head

Background - Self Attention (Single Head)

So, how do we present an
attention head?

66

Q

K

V

input

 x1

 x2

 x3

dx

dk

dk

 k1

 k2

 k3

q3 ⋅ k1 q3 ⋅ k2 q3 ⋅ k3

w3,1 w3,2 w3,3

 v1

 v2

 v3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

 out3

 out2

 out1

dx

Attention Head

Self Attention (Single Head)

dx

Q

K

V

input

 x1

 x2

 x3

dx

dk

dk

 k1

 k2

 k3

q3 ⋅ k1 q3 ⋅ k2 q3 ⋅ k3

w3,1 w3,2 w3,3

 v1

 v2

 v3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

 out3

 out2

 out1

dx

Attention Head

dx

Pairwise!

Self Attention (Single Head)

Q

K

V

input

 x1

 x2

 x3

dx

dk

dk

 k1

 k2

 k3

q3 ⋅ k1 q3 ⋅ k2 q3 ⋅ k3

w3,1 w3,2 w3,3

 v1

 v2

 v3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

 out3

 out2

 out1

dx

Attention Head

dx

Self Attention (Single Head)

Q

K

V

input

 x1

 x2

 x3

dx

dk

dk

 k1

 k2

 k3

q3 ⋅ k1 q3 ⋅ k2 q3 ⋅ k3

w3,1 w3,2 w3,3

 v1

 v2

 v3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

 out3

 out2

 out1

dx

Attention Head

dx

Single Head: Scoring Selecting↔

Pairwise!

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

Single Head: Scoring Selecting↔
Decision: RASP abstracts to binary

select/don’t select decisions

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

Single Head: Scoring Selecting↔
Decision: RASP abstracts to binary

select/don’t select decisions

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

Single Head: Scoring Selecting↔
Decision: RASP abstracts to binary

select/don’t select decisions

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

Single Head: Scoring Selecting↔
Decision: RASP abstracts to binary

select/don’t select decisions

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

Single Head: Scoring Selecting↔
Decision: RASP abstracts to binary

select/don’t select decisions

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

Single Head: Scoring Selecting↔
Decision: RASP abstracts to binary

select/don’t select decisions

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

Single Head: Scoring Selecting↔
Decision: RASP abstracts to binary

select/don’t select decisions

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

Single Head: Scoring Selecting↔

sel2 = select([2,0,0],[0,1,2],>=)

 2 0 0
0 T T T
1 T F F
2 T F F

Another example:

Decision: RASP abstracts to binary

select/don’t select decisions

prevs = select([0,1,2],[0,1,2],<=)

 0 1 0
0 T F F
1 T T F
2 T T T

Single Head: Scoring Selecting↔

prevs = select([0,1,2],[0,1,2],<=)

 0 1 0
0 T F F
1 T T F
2 T T T

Single Head: Scoring Selecting↔

 k1

 k2

 k3

(1, 0, 0, …)

(0, 1, 0, …)

(0, 0, 1, …)

prevs = select([0,1,2],[0,1,2],<=)

 0 1 0
0 T F F
1 T T F
2 T T T

Single Head: Scoring Selecting↔

 q1

 q2

 q3

(1, 0, 0, …)
(1, 1, 0, …)
(1, 1, 1, …)

 k1

 k2

 k3

(1, 0, 0, …)

(0, 1, 0, …)

(0, 0, 1, …)

Q

K

V

input

 x1

 x2

 x3

dx

dk

dk

 k1

 k2

 k3

q3 ⋅ k1 q3 ⋅ k2 q3 ⋅ k3

w3,1 w3,2 w3,3

 v1

 v2

 v3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

 out3

 out2

 out1

dx

Attention Head

dx

Single Head: Weighted Average Aggregation↔

Single Head: Weighted Average Aggregation↔
new=aggregate(sel, [1,2,4])

 . ….. 1 2 4
 F T T 1 2 4 => 3
 F F F 1 2 4 => 0 => [3,0,1]
 T F F 1 2 4 => 1

Single Head: Weighted Average Aggregation↔
new=aggregate(sel, [1,2,4])

 . ….. 1 2 4
 F T T 1 2 4 => 3
 F F F 1 2 4 => 0 => [3,0,1]
 T F F 1 2 4 => 1

Single Head: Weighted Average Aggregation↔
new=aggregate(sel, [1,2,4])

 . ….. 1 2 4
 F T T 1 2 4 => 3
 F F F 1 2 4 => 0 => [3,0,1]
 T F F 1 2 4 => 1

Single Head: Weighted Average Aggregation↔
new=aggregate(sel, [1,2,4])

 . ….. 1 2 4
 F T T 1 2 4 => 3
 F F F 1 2 4 => 0 => [3,0,1]
 T F F 1 2 4 => 1

Single Head: Weighted Average Aggregation↔
new=aggregate(sel, [1,2,4])

 . ….. 1 2 4
 F T T 1 2 4 => 3
 F F F 1 2 4 => 0 => [3,0,1]
 T F F 1 2 4 => 1

Single Head: Weighted Average Aggregation↔
new=aggregate(sel, [1,2,4])

 . ….. 1 2 4
 F T T 1 2 4 => 3
 F F F 1 2 4 => 0 => [3,0,1]
 T F F 1 2 4 => 1

Single Head: Weighted Average Aggregation↔
new=aggregate(sel, [1,2,4])

 . ….. 1 2 4
 F T T 1 2 4 => 3
 F F F 1 2 4 => 0 => [3,0,1]
 T F F 1 2 4 => 1

reverse=aggregate(flip, [A,B,C])

 . ….. A B C
 F F T A B C => C
 F T F A B C => B => [C,B,A]
 T F F A B C => A

Symbolic language + no averaging when only
one position selected allows (for example):

Great!
Now do multi-headed attention

90

Input

x1

x2

x3

dx

Background - Multi-Headed Self Attention

out1
3

out1
2

out1
1

dh

Head 1

dk = dv = dh =
dx

H

out2
3

out2
2

out2
1

dh

Head 2

outH
3

outH
2

outH
1

dh

Head H. . .

. . .

. . .

. . .

Concatenate

Output

out1
out2
out3

dx

x1

x2

x3

dh dh dh
. . .

91

The multi-headed attention lets one
layer do multiple single head operations

We do not need ‘new’ RASP operations to describe it!

92

(We will just let the RASP compiler know it can place multiple heads on the same layer)

Example: Reverse

reverse=aggregate(flip, [A,B,C])

 . ….. A B C
 F F T A B C => C
 F T F A B C => B => [C,B,A]
 T F F A B C => A

Example: Reverse

reverse=aggregate(flip, [A,B,C])

 . ….. A B C
 F F T A B C => C
 F T F A B C => B => [C,B,A]
 T F F A B C => A

Example: Reverse

reverse=aggregate(flip, [A,B,C])

 . ….. A B C
 F F T A B C => C
 F T F A B C => B => [C,B,A]
 T F F A B C => A

Example: Reverse

Example: Reverse

Example: Reverse

Example: Reverse

See anything suspicious in the example?

Example: Reverse

See anything suspicious in the example? It’s length!

Example: Reverse

The select decisions are pairwise!!
What would happen if they were arbitrarily powerful?

102

Transformer-Encoder Layer
Input

x1

x2

x3

dx

Multi-Head Attention A

Linear

Transformation

Residual

(“Skip”)

Connection
Layer

Norm 1

 o1

 o2

 o3

dx

Wff
1

 o′ 1

 o′ 2

 o′ 3

dx

 ff1
 ff2
 ff3

dff

Wff
2

 o′ ′ 1

 o′ ′ 2

 o′ ′ 3

dx

ReLU

Residual

(“Skip”)

Connection

Layer
Norm 2

Output

out1
out2
out3

dx

Feed-Forward Sublayer

102

103

Transformer-Encoder Layer
Input

x1

x2

x3

dx

Multi-Head Attention A

Linear

Transformation

Residual

(“Skip”)

Connection
Layer

Norm 1

 o1

 o2

 o3

dx

Wff
1

 o′ 1

 o′ 2

 o′ 3

dx

 ff1
 ff2
 ff3

dff

Wff
2

 o′ ′ 1

 o′ ′ 2

 o′ ′ 3

dx

ReLU

Residual

(“Skip”)

Connection

Layer
Norm 2

Output

out1
out2
out3

dx

Feed-Forward Sublayer

103

Layernorm

Open Question!!

Layer
Norm 1

Layer
Norm 2

RASP (Restricted Access Sequence Processing)

Initial Sequences Elementwise application of atomic operations

Selectors, and aggregate

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

new=aggregate(sel, [1,2,4])

 . ….. 1 2 4
 F T T 1 2 4 => 3
 F F F 1 2 4 => 0 => [3,0,1]
 T F F 1 2 4 => 1

104

RASP Extras
Extra Sequences

RASP Extras
Extra Sequences

Selector Compositions

RASP Extras
Extra Sequences

Selector Compositions

Functions

RASP Extras
Extra Sequences

Selector Compositions

Functions

Library Functions

RASP Extras
Extra Sequences

Selector Compositions

Functions

Library Functions

Small Example
Computing length:

Small Example
Computing length:

Small Example
Computing length:

Small Example
Computing length:

Small Example
Computing length:

Are our RASP programs predicting the right number of layers?

Are our RASP programs predicting relevant selector patterns?

Connection to Reality?

Connection to Reality?

full_s

flip_s

RASP expects 2 layers for arbitrary-length reverse

Connection to Reality?

full_s

flip_s

RASP expects 2 layers for arbitrary-length reverse

Test:

Training small transformers on lengths 0-100:

2 layers: 99.6% accuracy after 20 epochs

1 layer: 39.6% accuracy after 50 epochs

Even with compensation for
number of heads and parameters!

Connection to Reality?

full_s

flip_s

RASP expects 2 layers for arbitrary-length reverse

Test:

Training small transformers on lengths 0-100:

2 layers: 99.6% accuracy after 20 epochs

1 layer: 39.6% accuracy after 50 epochs

Bonus: the 2 layer transformer’s attention patterns:

Layer 1 (full_s) Layer 2 (flip_s)

Connection to Reality?
Example 2: histogram (assuming BOS)

Eg:

[§,h,e,l,l,o] [0,1,1,2,2,1]

[§,a,b,a] [0,2,1,2]

[§,a,b,c,c,c] [0,1,1,3,3,3]

↦
↦
↦

Connection to Reality?
Example 2: histogram (assuming BOS)

Eg:

[§,h,e,l,l,o] [0,1,1,2,2,1]

[§,a,b,a] [0,2,1,2]

[§,a,b,c,c,c] [0,1,1,3,3,3]

↦
↦
↦

Connection to Reality?
Example 2: histogram (assuming BOS)

Connection to Reality?
Example 2: histogram (assuming BOS)

Connection to Reality?
Example 2: histogram (assuming BOS)

Connection to Reality?
Example 2: histogram (assuming BOS)

Connection to Reality?
RASP analysis:

• Just one attention head

• It focuses on:

1. All positions with same token, and:

2. Position 0 (regardless of content)

Example 2: histogram (assuming BOS)

Connection to Reality?
RASP analysis:

• Just one attention head

• It focuses on:

1. All positions with same token, and:

2. Position 0 (regardless of content)

Selector pattern vs trained
transformer’s attention for same

input sequence:

Example 2: histogram (assuming BOS)

RASP (Restricted Access Sequence Processing)

Initial Sequences

Selectors, and aggregate

Elementwise application of atomic operations

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

new=aggregate(sel, [1,2,4])

 . ….. 1 2 4
 F T T 1 2 4 => 3
 F F F 1 2 4 => 0 => [3,0,1]
 T F F 1 2 4 => 1

Insight
1. Further motivates the Universal Transformer

Recurrent blocks are like

allowing loops in RASP!

Insight
2. Explains results of the Sandwich Transformer

s
f

self-attention

feed-forward

If re-ordering and switching attention and feed-
forward layers of a transformer (while adjusting

to keep same number of parameters):

1. Better to have attention earlier, and feed-

forward later

2. Only attention not enough

Insight
3. Transformers can “use” at least of the computational cost they have:
n log(n) n2

selector_width can be used to implement sort:

Open Question: is there something that “uses” all of the attention head cost?n2
which we know requires at least operations

(if making no assumptions on input data)
n log(n)

Tracr
Researchers at Deepmind built an actual compiler for (a large subset of) RASP!!?!

End

“Thinking Like Transformers” - ICML 2021

(Available on Arxiv)

Try it out!

 🌟 github.com/tech-srl/RASP 🌟

(or email me if you can’t get on github)

Do a challenge!

 🌟 https://srush.github.io/raspy/ 🌟

http://github.com/tech-srl/RASP
https://srush.github.io/raspy/

Optional Talking Points
• Bhattamishra et al (2020) note that, unlike LSTMs,

transformers struggle with some regular languages. Why
might that be? (What would a general method for
encoding a DFA in a transformer be?)

• Hahn (2019) proves that transformers with hard attention
cannot compute Parity with hard attention. RASP can
compute parity. What is the difference?

• How should we convert a RASP program to ‘real’
transformers? How big does our head-dimension need to
be for “select(indices,indices,<)”? How do we implement
and, or, and not between selectors?

• Do our selectors cover all the possible attention patterns?
What is missing?

• How can aggregating on no positions be achieved in a
transformer?

