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Transformers

Encoder

Decoder

an encoder-decoder pair can be trained to work 
together to solve tasks such as translation or 

summarisation

very similar to the encoder but:

- has a mask on the “attention”

- reads also from the decoder

very often you will see them independently…
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Transformers

Encoder

Decoder

Held sota on multiple NLP

 leaderboards 


(now has more competition…)

Example: BERT

Example: The GPT family of transformers

Improving Language Understanding by Generative 
Pre-Training

Alec Radford,  Karthik Narasimhan, Tim Salimans, Ilya Sutskever



Transformers
How do they think?????

x+5=11. What is x?

Cool! How did you do that?



Transformers

Encoder

Held sota on multiple NLP

 leaderboards 


(now has more competition… 
eg XLNet)

used in Google search!

Example: BERT

(understanding decoders will be very simple after encoders)

We will focus on 
encoders
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Extraction! Analysis of Expressive Power! Inspiration from existing theory!
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Model(s)!

Transformer

Stack-RNNs2-RNNs are WFAs

LSTMs are counter machines

GRUs are DFAs

Spectral extraction: 

RNNs to WFAs

DFA extraction: 

Clustering

DFA and WDFA extraction: 

L-star variants

Deterministic  
Finite Automata (DFAs)



(References for the Interested)
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RNN 
cell …

Initial State

O
utput Vector

x0 x1 x2

Extraction! Analysis of Expressive Power! Inspiration from existing theory!

Computational  
Model(s)!

Explaining Black Boxes on 

Sequential Data using Weighted Automata

Deterministic  
Finite Automata (DFAs)

Extraction of Rules from Discrete-
Time Recurrent Neural Networks

Extracting Automata from Recurrent 
Neural Networks Using Queries and 

Counterexamples

Connecting Weighted Automata and 
Recurrent Neural Networks through 

Spectral Learning

On the Practical Computational 
Power of Finite Precision RNNs for 

Language Recognition

A Formal Hierarchy of RNN 
Architectures

Sequential Neural Networks as 
Automata

Inferring Algorithmic Patterns with 
Stack-Augmented Recurrent Nets

Learning to Transduce with 
Unbounded Memory



But what are Transformer-Encoders?
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Transformer Encoders



Transformer Encoders

• Receive their entire input ‘at 
once’, processing all tokens in 
parallel


• Have multiple layers, such that 
the output of one is the input of 
the next
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Transformer Encoders

• Receive their entire input ‘at 
once’, processing all tokens in 
parallel


• Have a fixed number of layers, 
where the output of one is the 
input of the next

Computation “progresses” along network depth… not input length
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Transformers

Encoder Layer 1

x1 x2 x3

Layer input/outputs are “variables” of a transformer “program”
The layers themselves are “operations”

p(0) p(1) p(2)e(I) e(Like) e(dogs)

y1
1 y1

2 y1
3

Encoder Layer L

yL
1 yL

2 yL
3

I Like Dogs
tokens = positionwise_embeddings(input)


indices = positionwise_indices(input)


 = tokens+indices


 = ( )


 = ( )


…

 =  =  (  )

x

y1 L1 x

y2 L2 y1

y yL LL yL−1

…
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RASP (Restricted Access Sequence Processing)
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RASP (Restricted Access Sequence Processing)
• A transformer-encoder is a sequence to sequence function (“sequence operator”, or, “s-op”) 

• Its layers apply operations to the sequences 

• RASP builds s-ops, constrained to a transformer’s inputs and possible operations 

• (The s-ops are the transformer abstractions!)
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transformer has done anything

(“0 layer transformer”)



I

Like

Dogs
Positional  

Embedding

p(0)
p(1)
p(2)

dx

Word  
Embedding

e(I)
e(Like)
e(dogs)

dx

RASP base s-ops
The information before a 

transformer has done anything

(“0 layer transformer”)

tokens and indices are RASP built-ins:



The RASP REPL gives you 
examples (until you ask it not to)

I

Like

Dogs
Positional  

Embedding

p(0)
p(1)
p(2)

dx

Word  
Embedding

e(I)
e(Like)
e(dogs)

dx tokens and indices are RASP built-ins:

The information before a 
transformer has done anything


(“0 layer transformer”)

RASP base s-ops



Okay, now what?

To know what operations RASP may have, we must 
inspect the transformer-encoder layers!



Transformer-Encoder Layer
Input

x1

x2

x3

dx

Multi-Head Attention A

Linear 

Transformation

Residual 

(“Skip”)


Connection
Layer 

Norm 1

          o1

          o2

          o3

dx

Wff
1

          o′ 1

          o′ 2

          o′ 3

dx

          ff1
          ff2
          ff3

dff

Wff
2

          o′ ′ 1

          o′ ′ 2

          o′ ′ 3

dx

ReLU

Residual 

(“Skip”)


Connection

Layer 
Norm 2

Output

out1
out2
out3

dx

Feed-Forward Sublayer
There’s a lot in here…
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Linear 

Transformation

Residual 

(“Skip”)


Connection
Layer 

Norm 1
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dx
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dx

Residual 

(“Skip”)


Connection

Layer 
Norm 2

Output

out1
out2
out3

dx

Wff
1
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          ff2
          ff3

dff

Wff
2ReLU

Feed-Forward Sublayer

Input

x1

x2

x3

dx

Feed-Forward Sublayer



Multi-Head Attention A

Linear 

Transformation

Residual 

(“Skip”)


Connection
Layer 

Norm 1

          o1

          o2

          o3

dx

          o′ 1

          o′ 2

          o′ 3

dx

          o′ ′ 1

          o′ ′ 2

          o′ ′ 3

dx

Residual 

(“Skip”)


Connection

Layer 
Norm 2

Output

out1
out2
out3

dx

Wff
1

          ff1
          ff2
          ff3

dff

Wff
2ReLU

Feed-Forward Sublayer

Input

x1

x2

x3

dx

Feed-Forward Sublayer

Multilayer Feedforward Networks are 
Universal Approximators (Hornik et al, 

1989)



Feed-Forward gives us (Many) Elementwise 
Operations



So far

Are we all-powerful  
(well, transformer-powerful) yet?



Input

x1

x2

x3

dx

Multi-Head Attention A

Linear 

Transformation

Residual 

(“Skip”)


Connection
Layer 

Norm 1

          o1

          o2

          o3

dx

Wff
1

          o′ 1

          o′ 2

          o′ 3

dx

          ff1
          ff2
          ff3

dff

Wff
2

          o′ ′ 1

          o′ ′ 2

          o′ ′ 3

dx

ReLU

Residual 

(“Skip”)


Connection

Layer 
Norm 2

Output

out1
out2
out3

dx

Feed-Forward Sublayer

Transformer-Encoder Layer



A

Linear 

Transformation

Residual 

(“Skip”)


Connection
Layer 

Norm 1

          o1

          o2

          o3

dx

          o′ 1

          o′ 2

          o′ 3

dx

          o′ ′ 1

          o′ ′ 2

          o′ ′ 3

dx

Residual 

(“Skip”)


Connection

Layer 
Norm 2

Output

out1
out2
out3

dx

Wff
1

          ff1
          ff2
          ff3

dff

Wff
2ReLU

Feed-Forward Sublayer

Attention Sublayer
Multi-Head Attention

Input

x1

x2

x3

dx

elementwise

elementwise

Attention is all you need!



Background - Multi Head Attention

Starting from single-head attention…



Background - Self Attention (Single Head)
input

          x1

          x2

          x3

dx



Q

K

input

          x1

          x2

          x3

dx

dk

dk

          q1

          q2

          q3

          k1

          k2

          k3

Background - Self Attention (Single Head)



Q

K

input

          x1

          x2

          x3

dx

dk

dk

          q1

          q2

          q3

          k1

          k2

          k3

Background - Self Attention (Single Head)



Q

K

input

          x1

          x2

          x3

dx

dk

dk

          q1

          q2

          q3

          k1

          k2

          k3

q1 ⋅ k1

Background - Self Attention (Single Head)
scores



Q

K

input

          x1

          x2

          x3

dx

dk

dk

          q1

          q2

          q3

          k1

          k2

          k3

q1 ⋅ k1 q1 ⋅ k2

Background - Self Attention (Single Head)
scores



Q

K

input

          x1

          x2

          x3

dx

dk

dk

          q1

          q2

          q3

          k1

          k2

          k3

scores

q1 ⋅ k1 q1 ⋅ k2 q1 ⋅ k3
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Background - Self Attention (Single Head)



Q

K

V

input

          x1

          x2

          x3

dx

dk

dk

dv

          k1

          k2

          k3

q3 ⋅ k1 q3 ⋅ k2 q3 ⋅ k3

w3,1 w3,2 w3,3

          v1

          v2

          v3

normalise (i.e.  )× 1/ dk

softmax

scores

weights

          q1

          q2

          q3

          out3

          out2

          out1

dv

Attention Head

Background - Self Attention (Single Head)



So, how do we present an 
attention head?
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Self Attention (Single Head)
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          x2

          x3

dx
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          k2

          k3

q3 ⋅ k1 q3 ⋅ k2 q3 ⋅ k3
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          v3
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Attention Head
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Single Head: Scoring  Selecting↔

Pairwise!
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sel = select([2,0,0],[0,1,2],==)

    2  0  0 
0  F  T  T 
1  F  F  F 
2  T  F  F

Single Head: Scoring  Selecting↔

sel2 = select([2,0,0],[0,1,2],>=)

    2  0  0 
0  T  T  T 
1  T  F  F 
2  T  F  F

Another example:

Decision: RASP abstracts to binary 

select/don’t select decisions



prevs = select([0,1,2],[0,1,2],<=)

    0  1  0 
0  T  F  F 
1  T  T  F 
2  T  T  T

Single Head: Scoring  Selecting↔



prevs = select([0,1,2],[0,1,2],<=)

    0  1  0 
0  T  F  F 
1  T  T  F 
2  T  T  T

Single Head: Scoring  Selecting↔

                                           k1

                                           k2

                                           k3

(1, 0, 0, …)

(0, 1, 0, …)

(0, 0, 1, …)



prevs = select([0,1,2],[0,1,2],<=)

    0  1  0 
0  T  F  F 
1  T  T  F 
2  T  T  T

Single Head: Scoring  Selecting↔

                                            q1

                                           q2

                                           q3

(1, 0, 0, …)
(1, 1, 0, …)
(1, 1, 1, …)

                                           k1

                                           k2

                                           k3

(1, 0, 0, …)
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Single Head: Weighted Average  Aggregation↔
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 F  F  F    1 2 4   =>   0   =>   [3,0,1] 
 T  F  F    1 2 4   =>   1



Single Head: Weighted Average  Aggregation↔
new=aggregate(sel, [1,2,4])

       . ….. 1 2 4 
 F  T  T    1 2 4   =>   3 
 F  F  F    1 2 4   =>   0   =>   [3,0,1] 
 T  F  F    1 2 4   =>   1



Single Head: Weighted Average  Aggregation↔
new=aggregate(sel, [1,2,4])

       . ….. 1 2 4 
 F  T  T    1 2 4   =>   3 
 F  F  F    1 2 4   =>   0   =>   [3,0,1] 
 T  F  F    1 2 4   =>   1



Single Head: Weighted Average  Aggregation↔
new=aggregate(sel, [1,2,4])

       . ….. 1 2 4 
 F  T  T    1 2 4   =>   3 
 F  F  F    1 2 4   =>   0   =>   [3,0,1] 
 T  F  F    1 2 4   =>   1



Single Head: Weighted Average  Aggregation↔
new=aggregate(sel, [1,2,4])

       . ….. 1 2 4 
 F  T  T    1 2 4   =>   3 
 F  F  F    1 2 4   =>   0   =>   [3,0,1] 
 T  F  F    1 2 4   =>   1

reverse=aggregate(flip, [A,B,C])

       . ….. A B C  
 F  F  T    A B C   =>   C 
 F  T  F    A B C   =>   B  =>   [C,B,A] 
 T  F  F    A B C   =>   A

Symbolic language + no averaging when only 
one position selected allows (for example):



Great!  
Now do multi-headed attention
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Input

x1

x2

x3

dx

Background - Multi-Headed Self Attention

out1
3

out1
2

out1
1

dh

Head 1

dk = dv = dh =
dx

H

out2
3

out2
2

out2
1

dh

Head 2

outH
3

outH
2

outH
1

dh

Head H. . .

. . .

. . .

. . .

Concatenate

Output

out1
out2
out3

dx

x1

x2

x3

dh dh dh
. . .
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The multi-headed attention lets one 
layer do multiple single head operations

We do not need ‘new’ RASP operations to describe it!

92

(We will just let the RASP compiler know it can place multiple heads on the same layer)



Example: Reverse

reverse=aggregate(flip, [A,B,C])

       . ….. A B C  
 F  F  T    A B C   =>   C 
 F  T  F    A B C   =>   B  =>   [C,B,A] 
 T  F  F    A B C   =>   A



Example: Reverse

reverse=aggregate(flip, [A,B,C])

       . ….. A B C  
 F  F  T    A B C   =>   C 
 F  T  F    A B C   =>   B  =>   [C,B,A] 
 T  F  F    A B C   =>   A



Example: Reverse

reverse=aggregate(flip, [A,B,C])

       . ….. A B C  
 F  F  T    A B C   =>   C 
 F  T  F    A B C   =>   B  =>   [C,B,A] 
 T  F  F    A B C   =>   A



Example: Reverse



Example: Reverse



Example: Reverse



Example: Reverse

See anything suspicious in the example?



Example: Reverse

See anything suspicious in the example? It’s length!



Example: Reverse

The select decisions are pairwise!!
What would happen if they were arbitrarily powerful?
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Transformer-Encoder Layer
Input
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          o′ 2
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          ff2
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          o′ ′ 2

          o′ ′ 3
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dx

Feed-Forward Sublayer
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Transformer-Encoder Layer
Input

x1

x2

x3

dx

Multi-Head Attention A

Linear 

Transformation

Residual 

(“Skip”)


Connection
Layer 

Norm 1

          o1

          o2

          o3

dx

Wff
1

          o′ 1

          o′ 2

          o′ 3

dx

          ff1
          ff2
          ff3

dff

Wff
2

          o′ ′ 1

          o′ ′ 2

          o′ ′ 3

dx

ReLU

Residual 

(“Skip”)


Connection

Layer 
Norm 2

Output

out1
out2
out3

dx

Feed-Forward Sublayer
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Layernorm

Open Question!!

Layer 
Norm 1

Layer 
Norm 2



RASP (Restricted Access Sequence Processing)

Initial Sequences Elementwise application of atomic operations

Selectors, and aggregate

sel = select([2,0,0],[0,1,2],==)

    2  0  0 
0  F  T  T 
1  F  F  F 
2  T  F  F

new=aggregate(sel, [1,2,4])

       . ….. 1 2 4 
 F  T  T    1 2 4   =>   3 
 F  F  F    1 2 4   =>   0   =>   [3,0,1] 
 T  F  F    1 2 4   =>   1
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RASP Extras
Extra Sequences



RASP Extras
Extra Sequences

Selector Compositions
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Functions

Library Functions



Small Example
Computing length:



Small Example
Computing length:



Small Example
Computing length:



Small Example
Computing length:



Small Example
Computing length:



Are our RASP programs predicting the right number of layers?

Are our RASP programs predicting relevant selector patterns?

Connection to Reality?



Connection to Reality?

full_s

flip_s

RASP expects 2 layers for arbitrary-length reverse



Connection to Reality?

full_s

flip_s

RASP expects 2 layers for arbitrary-length reverse

Test:

Training small transformers on lengths 0-100:


2 layers: 99.6% accuracy after 20 epochs

1 layer: 39.6% accuracy after 50 epochs

Even with compensation for 
number of heads and parameters!



Connection to Reality?

full_s

flip_s

RASP expects 2 layers for arbitrary-length reverse

Test:

Training small transformers on lengths 0-100:


2 layers: 99.6% accuracy after 20 epochs

1 layer: 39.6% accuracy after 50 epochs

Bonus: the 2 layer transformer’s attention patterns:

Layer 1  (full_s) Layer 2  (flip_s)



Connection to Reality?
Example 2: histogram  (assuming BOS)

Eg:


[§,h,e,l,l,o]      [0,1,1,2,2,1]

[§,a,b,a]  [0,2,1,2]


[§,a,b,c,c,c]  [0,1,1,3,3,3]


↦
↦
↦



Connection to Reality?
Example 2: histogram  (assuming BOS)

Eg:


[§,h,e,l,l,o]      [0,1,1,2,2,1]

[§,a,b,a]  [0,2,1,2]


[§,a,b,c,c,c]  [0,1,1,3,3,3]


↦
↦
↦
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Connection to Reality?
RASP analysis:

• Just one attention head

• It focuses on: 


1. All positions with same token, and:

2. Position 0 (regardless of content)

Example 2: histogram  (assuming BOS)



Connection to Reality?
RASP analysis:

• Just one attention head

• It focuses on: 


1. All positions with same token, and:

2. Position 0 (regardless of content)

Selector pattern vs trained 
transformer’s attention for same 

input sequence:

Example 2: histogram  (assuming BOS)



RASP (Restricted Access Sequence Processing)

Initial Sequences

Selectors, and aggregate

Elementwise application of atomic operations

sel = select([2,0,0],[0,1,2],==)

    2  0  0 
0  F  T  T 
1  F  F  F 
2  T  F  F

new=aggregate(sel, [1,2,4])

       . ….. 1 2 4 
 F  T  T    1 2 4   =>   3 
 F  F  F    1 2 4   =>   0   =>   [3,0,1] 
 T  F  F    1 2 4   =>   1



Insight
1. Further motivates the Universal Transformer


Recurrent blocks are like 

allowing loops in RASP!




Insight
2. Explains results of the Sandwich Transformer


s
f

self-attention

feed-forward


If re-ordering and switching attention and feed-
forward layers of a transformer (while adjusting 

to keep same number of parameters): 

1. Better to have attention earlier, and feed-

forward later

2. Only attention not enough



Insight
3. Transformers can “use” at least  of the  computational cost they have:
n log(n) n2

selector_width can be used to implement sort:

Open Question: is there something that “uses” all  of the attention head cost?n2
which we know requires at least  operations 

(if making no assumptions on input data)
n log(n)



Tracr
Researchers at Deepmind built an actual compiler for (a large subset of) RASP!!?!




End

“Thinking Like Transformers” - ICML 2021

(Available on Arxiv)

Try it out!

   🌟  github.com/tech-srl/RASP  🌟

(or email me if you can’t get on github)

Do a challenge!

   🌟 https://srush.github.io/raspy/  🌟

http://github.com/tech-srl/RASP
https://srush.github.io/raspy/


Optional Talking Points
• Bhattamishra et al (2020) note that, unlike LSTMs, 

transformers struggle with some regular languages. Why 
might that be? (What would a general method for 
encoding a DFA in a transformer be?)


• Hahn (2019) proves that transformers with hard attention 
cannot compute Parity with hard attention. RASP can 
compute parity. What is the difference? 


• How should we convert a RASP program to ‘real’ 
transformers? How big does our head-dimension need to 
be for “select(indices,indices,<)”? How do we implement 
and, or, and not between selectors?


• Do our selectors cover all the possible attention patterns? 
What is missing?


• How can aggregating on no positions be achieved in a 
transformer?


