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Abstract

❏ Accurate knowledge of longitudinal beam parameters (e. g. energy 
error, phase error, bunch length and intensity) is essential for beam 
performance

❏ Leveraging the high-resolution measurements of longitudinal bunch 
profiles:
❏ Using fitting methods, bunch length, intensity, injection errors 

(phase, energy) can be calculated
❏ Using longitudinal tomography, bunch distribution and emittance 

can be calculated
❏ However, these methods are too time consuming for online use, limited 

to single bunch
❏ Develop ML model to:

❏ Obtain the desired beam parameters,
❏ and the 2D longitudinal beam distribution
❏ Fast enough to allow for online use with multi-bunch beams
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Tomoscope
❏ Pixel-Pixel MAE: 0.001 
❏ Visually indistinguishable

Original Model Architecture

EvaluationReality Gap

❏ Horizontal jitter due to collection trigger
❏ Random noise
❏ Ground truth not available
❏ Multi-bunch measurements, single-bunch 

simulations

Still some jitter NoiseHorizontal jitter

Raw measurement data Corrected Synthetic data

No noise & smooth

❏ ML model proves to be a powerful and promising solution for: 
❏ Real-time extraction of essential beam parameters
❏ Real time multi-bunch tomography
❏ Remarkable speed, <1’ for 300 turns reconstruction with 48 

bunches 
❏ Tool in operational state

❏ To be tested in next run
❏ GUI to assist operators, live display
❏ Output stored for post-processing

❏ Simulated data need to closely reproduce measurements
❏ A ML model is only as good as the data it is fed. 

Input Waterfall True PS, turn 270

Pred PS MSE 4.0e-6

⎻⎻ True
⎻⎻ Predicted

Time projection

Grid space search time

Search algorithms on 2D space

Limitation 1: Bottlenecks in Multi-output 

regression

Limitation 2: Restricted latent space provides 

sub-optimal performance

Solution: Ensemble of Encoders

● No bottlenecks

● More weights (60M)

Solution: Unsupervised latent space

● Improved precision (~25%), no beam 
parameters, More weights (151M)

❏ Huge Parameter Space
❏ 8 Models
❏ Convolution layers
❏ Dense layers
❏ Regularization
❏ Learning rate, epochs, batch size
❏ Input cropping, etc…

❏ Exhaustive search prohibitive 
❏ Tuning is essential
❏ Grid search optimisation with Optuna:

❏ Intelligent sampling
❏ Early-stopping

95-percentile

Phase Error 0.3 deg
Energy Error 1.56 MeV
LHC V_RF 0.05 MV
Bunch Length 13.2 ps
Intensity 1.2e9 p
SPS V_RF 0.16 MV
Distribution μ 0.14 a.u.

Encoder Ensemble Evaluation

❏ Matches or surpasses precision of classical 

methods

❏ Independent set of parameters

❏ Easy to add/ remove parameters

Runtime: 0.17 sec/ 48 
bunches/ turn ⇒ 51s/ 300 
turnsM
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Evaluate Matching
Pixel-to-Pixel 
MAE: 0.03

2. Training

1. Design

3. Version control 
model & weights

4. Model registration

5. UCAP Node
+ Live Subscriptions
+ Permanent Storage

GUI ApplicationMLP Integration

0.3

0.06

0.001

❏ Encoder: Conv2D at first, then fully connected
❏ Decoder: Mirrors the Encoder, with Conv2D transposed
❏ Alternative designs tested:

❏ Transformer ⇒ Similar accuracy
❏ Pix2Pix*: U-Net + GAN ⇒ Worse accuracy
❏ (Variational) Autoencoder ⇒ Worse accuracy

Capabilities:
❏ Minimal UI
❏ Subscribe to UCAP
❏ Inspect Bunch Profiles
❏ Beam diagnostics
❏ Longitudinal 

tomography
❏ Edit settings, save to 

file


