

Longitudinal Beam Diagnostics and Phase Space Reconstruction in the LHC Using ML

K. Iliakis¹, S. Albright, T. Argyropoulos, A. Lasheen, H. Timko, G. Trad European Organization for Nuclear Research (CERN), Geneva, Switzerland ¹konstantinos.iliakis@cern.ch

Original Model Architecture

Encoder: Conv2D at first, then fully connected

- **Decoder**: Mirrors the Encoder, with Conv2D transposed
- Alternative designs tested:
 - **Transformer** ⇒ Similar accuracy
 - **Pix2Pix***: U-Net + GAN \Rightarrow Worse accuracy
 - (Variational) **Autoencoder** \Rightarrow Worse accuracy

Improved Design & Optimization

Limitation 2: Restricted latent space provides

Deployment

CERN

- ML model proves to be a powerful and promising solution for:
 - **Real-time** extraction of essential **beam parameters**
 - **Real time** multi-bunch **tomography**
 - **Remarkable speed**, <1' for 300 turns reconstruction with 48 bunches
- Tool in **operational state**
 - To be tested in next run
 - GUI to assist operators, live display
 - Output stored for post-processing
- Simulated data need to closely reproduce measurements
 - A ML model is only as good as the data it is fed.

Accelerator Systems Department, Radio Frequency Group – Beams & RF Studies Section

6th Inter-Experiment Machine Learning Workshop Jan 29 - Feb 2, 2024, CERN, Geneva, Switzerland