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Abstract

▶ In the next years, LHC detectors will face significantly increased luminosities

▶ We are developing a hybrid deep learning algorithm to identify primary and
secondary vertices in pp collisions in this high pile-up environment

▶ Previous DNN models architecture and performances presented at
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A hybrid ML approach to finding primary vertices
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• poca-ellipsoids: the positions and error ellipsoids at tracks' positions 
of closest approach to the beamline. These are used to build Kernel 
Density Estimators along the beamline direction 

• target  histograms: proxies that are Gaussian distributions whose 
heights and widths reflect the expected PV resolutions 

• CNNs are trained to predict distributions similar to the target histograms 

• Heuristic algorithms extract PV positions from the predicted histograms

PV-finder flow

Training
Validation

Illustration: 
POCA ellipsoid projections

KDE distributions
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• Using KDEs (Kernel Density Estimators) to 
reduce very sparse 3D data (tracks parameters ; 
O(10-100 M) pixels) to feature-rich 1D data 
describing how tracks behave near their points 
of closest approach (POCA) to the beamline 

‣ KDE_A ︎  

‣ KDE_B ︎ 2 
‣ using KDE_A and KDE_B as input, plus X and Y 

where KDE_A is max improves KDE-to-hist
- XMax and YMax  

• LHCb KDE-to-hist models use similar KDEs: 
better separated PVs due to lower pile-up; 
worse z resolution 

•

≈ ∑ probabilities
≈ ∑ probabilities

KDE distributions exhibit peaking structures near PV positions 
Hand-written KDE computations expensive!

Target histograms as proxies to learn

State of the art architecture [LHCb implementation]

POCA 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LHCb: nominal model performances

LHCb: performances after pruning / FP reduction

ATLAS: model architecture and evaluation

• PV-finder in ATLAS: 
‣ Similar approach based on the KDE-to-
hist model developed for LHCb 

‣ Tested two DNNs: UNet and UNet++ 
(using denser skip connections) 

• Performances evaluation: 
‣ Using  events with ATLAS simulation for   
‣ Comparing UNet and UNet++ to default algorithm: 

AMVF (Adaptive Multi Vertex Finder)

tt < μ > = 60

• Vertex separation & resolution: 
‣ longitudinal separation between pairs of 

all nearby reconstructed PV:  

‣ : half-width at the half-depth of the dip

Δzvtx−vtx

σvtx

ATLAS: model performances

• Vertex classification: 
‣ Four categories of vertex depending on :σvtx

• Efficiency: 
‣ Number of clean or merged over true

• False positive rate: 
‣ Average number of fake

UNet++ performances are comparable to AMVF 
Validation of the PV-finder approach, even without hyper parameter optimisation 
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