DIFFERENTIABLE VERTEX FITTING FOR JET FLAVOUR TAGGING Rachel E. C. Smith¹, Inês Ochoa², **Rúben Inácio**², Jonathan Shoemaker¹, and Michael Kagan¹ ¹SLAC National Accelerator Laboratory² Laboratory of Instrumentation and Experimental Particle Physics, Lisbon https://arxiv.org/abs/2310.12804

1. Motivation

Flavour tagging is essential for studying a wide array of physical processes at the LHC. It relies on the unique properties of heavy quark hadrons, including the presence of a secondary vertex (SV) displaced from the primary collision. The current state-of-the-art models use modern neural networks (NNs) that do not explicitly fit SVs. Can we integrate vertex fitting into end-to-end ML trainable models?

- Formulated as an inclusive vertexing task, using the **Billoir algorithm**.
- Least square objective, denoted as \mathcal{S} :
- –qⁱ : primary vertex
- $-\mathbf{V}_\mathbf{i}$: covariance matrix
- $-\mathbf{v}$: vertex position
- $-\mathbf{p}_i$: track momentum at the vertex
- $-\mathbf{h}_i(\mathbf{v}, \mathbf{p}_i)$: track model
- $-w_i$: weight of the track between 0 and 1 that represents representing how much it contributes to the fit

- •We minimize an objective function $\mathcal{S}(\mathbf{x}, \alpha)$ by optimizing the value of **x** given the set of parameters α .
- Since S is continuously differentiable with non-singular Jacobian, we can use the implicit function theorem.

• Assuming $\mathcal{G}\equiv$ $\hat{\bm{\mathcal{J}}}$ $\partial_\mathbf{x} \mathcal{S}(\hat{\mathbf{x}}, \alpha)$: $0 =$ \overline{d} $\frac{d}{d\alpha}\mathcal{G}% _{A} \left(\alpha ,\alpha \right) =\frac{d\alpha }{d\alpha}\mathcal{G}_{A}\left(\alpha ,\alpha \right)$ $\hat{\bm{\mathcal{J}}}$ = $\partial\mathcal{G}% (\theta)\equiv\partial_{\theta}\mathcal{G}_{\theta}^{(1)}(\theta)$ $\hat{\bm{\mathcal{J}}}$ $\frac{\partial}{\partial \alpha} +$ $\partial\mathcal{G}% (\theta)\equiv\partial_{\theta}\mathcal{G}_{\theta}^{(1)}(\theta)$ $\hat{\bm{\mathcal{J}}}$ $\partial\mathbf{x}$ $\partial\mathbf{x}$ $rac{\partial}{\partial \alpha}$ \Leftrightarrow $\partial \mathbf{x}$ $\partial \alpha$ $= \int\!\frac{\partial\mathcal{G}}{\partial\mathcal{G}}$ $\hat{\bm{\mathcal{J}}}$ $\partial {\bf x}$ $\bigwedge^{-1} \overline{\partial} \mathcal{G}$ $\hat{\bm{\mathcal{J}}}$ $\partial \alpha$ •This result defines a custom derivative function of the NN optimization in the **backward** pass.

2. Secondary Vertexing

• **Estimate a common vertex** that originated a set of tracks.

- -0.75 in son l -1.00 40 60 80 100 120 160 $(X_{pred} - X_{true})/\sigma_X$ Jet p_T [GeV]
- NDIVE is able to accurately estimate the SVs by providing unbiased predictions.

• NDIVE integration into FTAG provides improvements in the rejection of both c- and light-jets.

$$
\mathcal{S} = \chi^2 = \sum_{i=1}^N w_i (\mathbf{q}_i - \mathbf{h}_i(\mathbf{v}, \mathbf{p}_i))^T \mathbf{V}_i^{-1} (\mathbf{q}_i - \mathbf{h}_i(\mathbf{v}, \mathbf{p}_i))
$$

3. Differentiable optimization with custom derivatives

4. NDIVE

5. FTAG+NDIVE

6. Performance: vertex fitting and flavour tagging

•Further room for improvement with better weight prediction.

7. Conclusion

• We introduce the differentiable vertex fitting algorithm NDIVE that can readily be integrated and jointly optimized in a larger flavour tagging NN model.

• These methodological developments are generic, applicable to other vertex fitting algorithms and other schemes for integrating vertex information into NNs.

