DIFFERENTIABLE VERTEX FITTING FOR JET FLAVOUR TAGGING Rachel E. C. Smith¹, Inês Ochoa², **<u>Rúben Inácio²</u>**, Jonathan Shoemaker¹, and Michael Kagan¹ ¹SLAC National Accelerator Laboratory ² Laboratory of Instrumentation and Experimental Particle Physics, Lisbon https://arxiv.org/abs/2310.12804

1. Motivation

Flavour tagging is essential for studying a wide array of physical processes at the LHC. It relies on the unique properties of heavy quark hadrons, including the presence of a secondary vertex (SV) displaced from the primary collision. The current state-of-the-art models use modern neural networks (NNs) that do not explicitly fit SVs. Can we integrate vertex fitting into end-to-end ML trainable models?

2. Secondary Vertexing

• Estimate a common vertex that originated a set of tracks.

5. FTAG+NDIVE

- Formulated as an inclusive vertexing task, using the **Billoir algorithm**.
- Least square objective, denoted as \mathcal{S} :
- −**q**_i: primary vertex
- $-\mathbf{V}_{\mathbf{i}}$: covariance matrix
- $-\mathbf{v}$: vertex position
- $-\mathbf{p}_i$: track momentum at the vertex
- $-\mathbf{h}_i(\mathbf{v},\mathbf{p}_i)$: track model
- $-w_i$: weight of the track between 0 and 1 that represents representing how much it contributes to the fit

$$S = \chi^2 = \sum_{i=1}^{N} w_i (\mathbf{q}_i - \mathbf{h}_i (\mathbf{v}, \mathbf{p}_i))^T \mathbf{V}_i^{-1} (\mathbf{q}_i - \mathbf{h}_i (\mathbf{v}, \mathbf{p}_i))$$

3. Differentiable optimization with custom derivatives

6. Performance: vertex fitting and flavour tagging

- We minimize an objective function $\mathcal{S}(\mathbf{x}, \alpha)$ by optimizing the value of \mathbf{x} given the set of parameters α .
- Since \mathcal{S} is continuously differentiable with non-singular Jacobian, we can use the **implicit function theorem**.

• Assuming $\hat{\mathcal{G}} \equiv \partial_{\mathbf{x}} \mathcal{S}(\hat{\mathbf{x}}, \alpha)$: $0 = \frac{d}{d\alpha}\hat{\mathcal{G}} = \frac{\partial\hat{\mathcal{G}}}{\partial\alpha} + \frac{\partial\hat{\mathcal{G}}}{\partial\mathbf{x}}\frac{\partial\mathbf{x}}{\partial\alpha} \Leftrightarrow \frac{\partial\mathbf{x}}{\partial\alpha} = -\left(\frac{\partial\hat{\mathcal{G}}}{\partial\mathbf{x}}\right)^{-1}\frac{\partial\hat{\mathcal{G}}}{\partial\alpha}$ • This result defines a custom derivative function of the NN optimization in

the **backward pass**.

4. NDIVE

• NDIVE is able to accurately estimate the SVs by providing unbiased predictions.

• NDIVE integration into FTAG provides improvements in the rejection of both *c*- and light-jets.

• Further room for improvement with better weight prediction.

7. Conclusion

• We introduce the differentiable vertex fitting algorithm NDIVE that can readily be integrated and jointly optimized in a larger flavour tagging NN model.

• **These methodological developments are generic**, applicable to other vertex fitting algorithms and other schemes for integrating vertex information into NNs.

