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1. Motivation

Flavour tagging is essential for studying a wide array of physical processes at the LHC. It relies on the unique properties of heavy quark hadrons, including the
presence of a secondary vertex (SV) displaced from the primary collision. The current state-of-the-art models use modern neural networks (NNs) that do not
explicitly fit SVs. Can we integrate vertex fitting into end-to-end ML trainable models?

2. Secondary Vertexing 5. FTAG+NDIVE

e Estimate a common vertex that originated a set of tracks.

e Formulated as an inclusive vertexing task, using the Billoir algorithm.
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3. Differentiable optimization with custom derivatives .
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e We minimize an objective function S(x, ) by optimizing the value of x

given the set of parameters . e NDIVE is able to accurately estimate the SVs by providing unbiased pre-

e Since S is continuously differentiable with non-singular Jacobian, we can Feome

use the implicit function theorem.
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e This result defines a custom derivative function of the NN optimization in
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the backward pass.
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4. NDIVE
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e Further room for improvement with better weight prediction.
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7. Conclusion

¢ \We introduce the differentiable vertex fitting algorithm NDIVE that can readily be integrated and jointly optimized in a larger flavour tagging NN model.

e These methodological developments are generic, applicable to other vertex fitting algorithms and other schemes for integrating vertex information into NNs.
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