Reinforcement Learning Algorithms for Charged Particle
Tracking with Applications in Proton Computed Tomography

Tobias Kortus*  Ralf Keidel* Nicolas R. Gauger “
on behalf of the Bergen pCT Collaboration

'University of Applied Sciences Worms University of Kaiserslautern-Landau (RPTU)

Proton Computed Tomography and Particle Tracking Multi-Agent Reinforcement Learning (Work in Progress)

= Photon-based radiation: High entrance doses with exponential decreasing doses with increasing Design considerations for training Multi-agent RL (MARL) agents for particle tracking:

penetrating depth. 1. Dec-POMDP: Consider multiple decentralized agents (similar to single-agent) with only local

* Proton-based radiation: Lower entrance doses with high energy deposition at Bragg peak — minimize observations per agent and limited communication — minimal performance impact by avoiding global
damage to healthy tissue. information or complex communication protocols.

" Accurate treatment planning is essential to avoid damaging healthy tissue. 2. CTDE: Use additional information during training that is unavailable during inference (centralized critic)

= Proton Computed Tomography: Direct estimation of relative stopping power using protons (higher — better training performance (reduced instationarity of the whole system).
initial energy) — requires measurements of proton trajectories and energy (estimated using energy 3. Constraints. Enforce agreement between agents — unique particle assignment (constraint satisfaction
depositions of trajectory over detector layers). by designing a safety layer [5]). — deterministic output policy i/ motivates use of Multi-agent Deep

= Particle tracking: Identification of distinct set of hits in discrete detector readouts over multiple layers Deterministic Policy Gradient (MADDPG) [6].

corresponding to the same particle — in the following: simulations of the Bergen pCT DTC prototype [1].
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= Goal: Find an optimal (or nearly-optimal) reconstruction policy ©* by repeatedly interacting with the _ =< 2 ﬁ ) -
constructed environment (maximizing long-term rewards). g = £ §D - llll
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= Policy: Decision strategy of the agent for each given state 7 : § x A — [0, 1]. =¥ SS = ; i Z
= Reward: Likelihood of track segment under the theory of multiple Coulomb scattering (MCS). éj TN S& | e = Centralized Critic
= Value-function: Estimate of the expected future reward of a current state — used for bootstrapping to 85 > Q(LO)
reduce variance of sampled track candidates. : ®
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State s; . % % = ., (a(’i)|3t) Figure 4. MARL architecture for training of decentralized agents with safety layer using centralized critic.
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- § S Vet Unique particle hit assignment (with constraint satisfaction guarantee) using linear sum assingment (LSA)
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Fieure 1. Interaction loop between environment containing particle readouts and a reconstruction agent. : : : : . . :
° g 5P . where p' = {ui, ...y} is the inferred safe policy by solving the LSA problem using the weight matrix

W = w;; "V (distance between local policy and possible action).

Graph Construction Blackbox Differentiation: Gradients are either zero or infinity (piece-wise constant function of linear sum
assignment solver) — implicitly interpolated gradients using [7].

= Track hypotheses as a directed acyclic graph G = (V, &) with:
= p € )V : Particle hits in the detector.

= ¢ € £ Possible segments connecting two hits in adjacent layers (reversed — backward tracking). (Preliminary) Results
= Edge and node features (v, €): v; = (AFE, x4, i, %) €ij = (7ij, 0ij, Pij)

= Evaluation of reconstruction performance on Monte-Carlo simulations using GATE software toolkit [8].
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Figure 2. Schematic representation of a fully connected hit graph with possible track segments. " » 402\/
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Network Architecture

. . o . . Figure 5. Reconstructed tracks using single-agent RL algorithm with 50, 100, 150 and 200 tracks per frame.
= Node embedding Updated node representation by aggregating information over a multi-hop

neighborhood using a Graph Neural Network (GNN).
© © = Purities (p) and efficiencies (e) (after filtering tracks with high angle scattering and low energies in final

= Dynamic positional encoding: Encoding of positional information using cosine-similarities (last — layer) — in depth evaluation of single-agent RL available in [2].

current segments) with dynamic focusing of area of attention.

= Action encoder: Exchange of information between action candidates. , _ _ _ _ ,
Table 1. Reconstruction performance, measured in terms of purity p and efficiency e for different configurations. Results marked

= Action decoder: ESﬁmaﬁOﬂ of |i|fe|ih00d of taking an action/ ValL.Je of a state by correlating with * are cherry-picked runs due to instability of training. Results for Search and PPO are taken from [2].
preprocessed action representation and observation representation [3].

100 mm Water 150 mm Water 200 mm Water
Density Algorithm p [%] e (%] p %] e (%] p [%] e [%]

100 Search [9] 83.0£0.0 74.6£0.0 86.5+0.0 /9.0£0.0 87.4+£0.0 80.3+£0.0
PPO [2] 85.6£0.3 75.2+0.5 88.84+0.5 /9.0£0.5 89.5£0.4 80.84+0.5
MADDPG+LSA* 90.84+-.- 75.7+-- 92.8+-.- 79.1+-- 93.1+-.- 81.0+£-.-

| |
||
||
|
150 Search [9] /9.1£0.0 /70.9£0.0 83.2+0.0 75.7£0.0 384.7/£0.0 77.7£0.0
PPO [2] 80.5+0.4 /0.8£0.3 83.8£0.7 /74.4+0.6 35.3£0.6 76.9£0.5

:»GD»
MADDPG+LSA* 87.3+-.- 71.0+-.- 89.1+-.- /424+-- 90.7+-.- /3.6+-.-

II

‘| 200 Search [9] /54400 67.4+0.0 30.1+£0.0 72.9+£0.5 81.6+0.4 75.0£0.0
_,,,.nlln PPO [2] /5.3+£0.6 66.6£0.6 80.0+£0.8 70.9+£0.6 31.7£0.6 73.8£0.5
MADDPG+LSA* 83.0+-.- 65.6+-.- 86.9+-.- /1.1+-- 87.7+£-.- /3.6£-.-
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Figure 3. Shared network architecture for policy and state-value estimates. References

= Optimization: Iterative optimization of policy/value using Proximal Policy Optimization (PPO) [4] —
reward for each interaction based on likelihood of observed scattering angle.
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= Ambiguities in assignments: Conflicts in reconstruction can assign the same particle to multiple
tracks — generation of implausible tracks.
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