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Proton Computed Tomography and Particle Tracking

Photon-based radiation: High entrance doses with exponential decreasing doses with increasing

penetrating depth.

Proton-based radiation: Lower entrance doses with high energy deposition at Bragg peak → minimize

damage to healthy tissue.

Accurate treatment planning is essential to avoid damaging healthy tissue.

Proton Computed Tomography: Direct estimation of relative stopping power using protons (higher

initial energy) → requires measurements of proton trajectories and energy (estimated using energy

depositions of trajectory over detector layers).

Particle tracking: Identification of distinct set of hits in discrete detector readouts over multiple layers

corresponding to the same particle → in the following: simulations of the Bergen pCT DTC prototype [1].

Reinforcement Learning for Particle Tracking [2]

Goal: Find an optimal (or nearly-optimal) reconstruction policy π∗ by repeatedly interacting with the

constructed environment (maximizing long-term rewards).

Policy: Decision strategy of the agent for each given state π : S × A → [0, 1].
Reward: Likelihood of track segment under the theory of multiple Coulomb scattering (MCS).

Value-function: Estimate of the expected future reward of a current state → used for bootstrapping to

reduce variance of sampled track candidates.
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Figure 1. Interaction loop between environment containing particle readouts and a reconstruction agent.

Graph Construction

Track hypotheses as a directed acyclic graph G = (V , E) with:
v ∈ V : Particle hits in the detector.

e ∈ E Possible segments connecting two hits in adjacent layers (reversed → backward tracking).

Edge and node features (~v,~e): ~vi = (∆E, xi, yi, zi) ~eij = (rij, θij, φij)

particle direction

Figure 2. Schematic representation of a fully connected hit graph with possible track segments.

Network Architecture

Node embedding Updated node representation by aggregating information over a multi-hop

neighborhood using a Graph Neural Network (GNN).

Dynamic positional encoding: Encoding of positional information using cosine-similarities (last →
current segments) with dynamic focusing of area of attention.

Action encoder: Exchange of information between action candidates.

Action decoder: Estimation of likelihood of taking an action/ value of a state by correlating

preprocessed action representation and observation representation [3].
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Figure 3. Shared network architecture for policy and state-value estimates.

Optimization: Iterative optimization of policy/value using Proximal Policy Optimization (PPO) [4] →
reward for each interaction based on likelihood of observed scattering angle.

Limitations of Single-Agent Reinforcement Learning

Partial observability: Reconstruction w.r.t. entire readout frame remains still partial observable (other

tracks are not taken into consideration).

Ambiguities in assignments: Conflicts in reconstruction can assign the same particle to multiple

tracks → generation of implausible tracks.

Multi-Agent Reinforcement Learning (Work in Progress)

Design considerations for training Multi-agent RL (MARL) agents for particle tracking:

1. Dec-POMDP: Consider multiple decentralized agents (similar to single-agent) with only local

observations per agent and limited communication → minimal performance impact by avoiding global

information or complex communication protocols.

2. CTDE: Use additional information during training that is unavailable during inference (centralized critic)

→ better training performance (reduced instationarity of the whole system).

3. Constraints. Enforce agreement between agents → unique particle assignment (constraint satisfaction

by designing a safety layer [5]). → deterministic output policy µ′ motivates use of Multi-agent Deep

Deterministic Policy Gradient (MADDPG) [6].
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Figure 4. MARL architecture for training of decentralized agents with safety layer using centralized critic.

LSA Safety Policy Layer

Unique particle hit assignment (with constraint satisfaction guarantee) using linear sum assingment (LSA)

with imperfect matching:

min
M ′

∑
(i,j)∈E

µ′
ijwij, where µ′

ij ∈ {0, 1} (1)

where µ′ = {µ′
1, . . . µ′

N} is the inferred safe policy by solving the LSA problem using the weight matrix

W = wij
M×N (distance between local policy and possible action).

BlackboxDifferentiation: Gradients are either zero or infinity (piece-wise constant function of linear sum

assignment solver) → implicitly interpolated gradients using [7].

(Preliminary) Results

Evaluation of reconstruction performance on Monte-Carlo simulations using GATE software toolkit [8].

Simulation of multiple phantom geometries using water cubes with various thicknesses (100–200 mm).
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Figure 5. Reconstructed tracks using single-agent RL algorithm with 50, 100, 150 and 200 tracks per frame.

Purities (p) and efficiencies (ε) (after filtering tracks with high angle scattering and low energies in final

layer) → in depth evaluation of single-agent RL available in [2].

Table 1. Reconstruction performance, measured in terms of purity p and efficiency ε for different configurations. Results marked

with * are cherry-picked runs due to instability of training. Results for Search and PPO are taken from [2].

100 mmWater 150 mmWater 200 mmWater

Density Algorithm p [%] ε [%] p [%] ε [%] p [%] ε [%]

100 Search [9] 83.0±0.0 74.6±0.0 86.5±0.0 79.0±0.0 87.4±0.0 80.3±0.0

PPO [2] 85.6±0.3 75.2±0.5 88.8±0.5 79.0±0.5 89.5±0.4 80.8±0.5

MADDPG+LSA∗ 90.8±–.– 75.7±–.– 92.8±–.– 79.1±–.– 93.1±–.– 81.0±–.–

150 Search [9] 79.1±0.0 70.9±0.0 83.2±0.0 75.7±0.0 84.7±0.0 77.7±0.0

PPO [2] 80.5±0.4 70.8±0.3 83.8±0.7 74.4±0.6 85.3±0.6 76.9±0.5

MADDPG+LSA∗ 87.3±–.– 71.0±–.– 89.1±–.– 74.2±–.– 90.7±–.– 73.6±–.–

200 Search [9] 75.4±0.0 67.4±0.0 80.1±0.0 72.9±0.5 81.6±0.4 75.0±0.0

PPO [2] 75.3±0.6 66.6±0.6 80.0±0.8 70.9±0.6 81.7±0.6 73.8±0.5

MADDPG+LSA∗ 83.0±–.– 65.6±–.– 86.9±–.– 71.1±–.– 87.7±–.– 73.6±–.–
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