

# ELECTRON AND PROTON CLASSIFICATION WITH AMS ECAL **USING CONVOLUTIONAL VISION TRANSFORMERS AND DOMAIN ADAPTATION**

B.Türk<sup>1</sup>, M.B.Demirköz<sup>1</sup>, E.Akbaş<sup>2</sup>, Z.Weng<sup>3</sup>, G.Karagöz<sup>1</sup>

<sup>1</sup>Middle East Technical University, Physics Department, IVMER, Ankara, Türkiye <sup>2</sup>Middle East Technical University, Computer Engineering Department, Ankara, Türkiye <sup>3</sup>CERN, Geneva, Switzerland



6th Inter-experiment Machine Learning Workshop in CERN, 29 January-2 February 2024

## Abstract

Alpha Magnetic Spectrometer (AMS-02) is a precision high-energy cosmic-ray experiment on the ISS operating since 2011 and has collected more than 228 billion particles. Among them, positrons are important to understand the particle nature of dark matter. Separating the positrons from cosmic background protons is challenging above 1 TeV. Therefore, we use state-of-the-art convolutional and transformer models, CoAtNet and Convolutional Vision Transformer (CvT), that employ the shower signals from the ECAL to classify the electrons/positrons in the dominant cosmic protons events from the ISS data and Monte Carlo Simulation in the energy range between 0.2-2 TeV by applying various data quality cuts on reconstructed variables obtained from the subdetectors. Initially, since ECAL showers are not tunned in the AMS MC, our MC trained models show a lower proton rejection on the ISS data. To accommodate the difference between the training and test domain adaptation with the CoAtNet and CvT to mitigate this dataset bias/domain shift. We also trained domain adaptation with a set of well-reconstructed 1 electron charge ISS events without electron/proton labels at TeV energy order as the target dataset. We evaluated the models between 1-2 TeV energy using ISS and MC events with the proton rejection vs. electron efficiency and proton rejection vs. energy at near 90% electron efficiency plots. We performed experiments using various training and validation dataset combinations and other hyperparameters with the CvT and CoAtNet. Among them, the best models are obtained with the 1-2TeV MC events as training data and half of the labeled 1-2 TeV ISS events as validation data. Using domain adaptation with the CoAtNet, we obtained a maximum proton rejection at 88% electron efficiency on the ISS data. We also rejected all of the MC protons at higher than 99.8% electron efficiency, the proton rejection power of the CvT and CoAtNet is 5 and 7 times higher than the proton rejection power of the AMS's Boosted Decision Tree and ECAL Likelihood Estimator for MC events in the 1-2 TeV range.

## Introduction



### **Figure 1:** AMS-02 on the International Space Station [1].



Figure 2: AMS detector with the subdetectors [1].

- AMS observed more than 228 billion cosmic ray events.
- AMS measurements show an excess of positron flux above 25 GeV higher than what is expected from cosmic ray collisions [1].
- To confine the positron models better, we need high positron statistic with high proton rejection above 1 TeV
- Positron separation from background protons are challenging above 1 TeV;
- There are more than 10<sup>4</sup> protons per positron

## Method



Figure 6: Architecture of Domain Adaptation. It consists of 3 networks, Feature Extractor, Label Classifier, and Domain Classifier [2].

Figure 7: (a) Architecture of Convolutional Vision Transformers. (b) Convolutional Transformer Block [3].



- Early Stopping to prevent the overfitting
- Weighted Cross Entropy Loss Function for the class imbalance
- Adam Optimization Algorithm [5]
- Domain Adaptation to decrease the domain shift between MC and ISS Dataset
- Created training, validation, test and target sets by processing raw data and applying cuts to obtain good reconstructed events with high purity.

|                               | MC Lower<br>Energy Set | MC Higher<br>Energy Set | ISS Validation<br>Dataset | ISS Test<br>Dataset | ISS Target Set<br>(Well reconstructed 1e <sup>-</sup> ISS<br>Data) |
|-------------------------------|------------------------|-------------------------|---------------------------|---------------------|--------------------------------------------------------------------|
| Number of<br>Electrons        | $3.5 \times 10^{6}$    | $1.2 \times 10^{6}$     | 10                        | 11                  | Labels are not necessary                                           |
| Number of<br>Protons          | $2 \times 10^{6}$      | 2.6 × 10 <sup>6</sup>   | 828                       | 696                 | Label are not necessary                                            |
| Total Number of Samples       | $5.5 \times 10^{6}$    | $3.8 \times 10^{6}$     | 838                       | 707                 | $2 \times 10^{5}$                                                  |
| Reconstructed<br>Energy Range | 0.2 — 1 <i>TeV</i>     | 1 – 2 TeV               | 0.95 – 2 <i>TeV</i>       | 1 – 2 TeV           | 0.2 – 2 <i>TeV</i>                                                 |





**Figure 4:** (a) AMS Electromagnetic Calorimeter. It is 17  $X_0$  (b) Small section of a super layer of the ECAL. (c) Scintillation Fibers. (d) A cell which is collected by the one of anode of the PMT [1].

- 2. Proton showers consist of electromagnetic showers because  $\pi^0$  decays to 2 photons.
- 3. TRD's proton rejection power decreases
- 4. Recons. Energy/Rigidity ratio deviates more from 1



Cell Number



Figure 5: ECAL shower signals. When the electrons and protons pass through the electromagnetic calorimeter, many secondary particles are created. The particles deposits energies which are recorded by the photomultiplier tubes.

### Table 1: Details of ISS Datasets and MC sets

## **Results & Conclusion**



#### Proton Rejection vs Electron Efficiency with ISS Data (Reconstructed Energy 1-2 TeV



## References

- 1. M. Aguilar, L.A. Cavasonza, G. Ambrosi et al. Physics Reports 894 (2021) 1
- 2. Ganin, Yaroslav, and Victor Lempitsky. "Unsupervised domain adaptation by backpropagation." International conference on machine learning. PMLR, 2015.
- 3. Wu, Haiping, et al. "Cvt: Introducing convolutions to vision transformers." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.
- 4. Dai, Zihang, et al. "Coatnet: Marrying convolution and attention for all data sizes." Advances in neural information processing systems 34 (2021): 3965-3977.
- 5. Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic optimization." arXiv preprint arXiv:1412.6980(2014).

## Acknowledgements

This project is supported by The Scientific and Technological Research Council of Türkiye (TÜBİTAK) under Program Name 1001 - The Scientific and Technological Research Projects Funding Program, Project No. 123F090



MC Test Set(1-2 TeV).

Figure 10: Proton Rejection vs. Energy at 90% Electron Efficiency with ISS Test Dataset.

Figure 8: Proton Rejection vs. Electron Efficiency with Figure 9: Proton Rejection vs. Electron Efficiency with ISS Test Dataset(1-2 TeV).

- Total Number of Protons  $Proton \ Rejection = \frac{1}{Total \ Number \ of \ Misclassified \ Protons}$
- CvT, CoAtNetO, and CoAtNet3 are trained with MC Training Set (0.2-1 TeV).
- MC Validation(1-2 TeV) set for CvT and CoAtNetO.
- ISS Validation set for CoAtNet3
- CoAtnet3 misclassifies 6 ISS Data protons at around 90% electron efficiency.
- Better Results are obtained for CvT(D.A.) and CoAtNet(D.A.) by using MC High Energy .Set.
- CoAtNet with Domain Adaptation has only 1 misclassified proton on the ISS Test Dataset.