



![](_page_0_Picture_3.jpeg)

ATLAS GNN

# **TRAINING & OPTIMISATION OF LARGE** TRANSFORMERS **ATLAS CASE STUDY ON** FLOW

maxence.draguet@physics.ox.ac.uk 📈 µP

| Embedding Width |
|-----------------|
| 64              |
| <u> </u>        |
| <b>—</b> 256    |

µTransfer

![](_page_0_Figure_12.jpeg)

## **Kubeflow**

- 1. Multi-platform & flexible
- 2. Hardware agnostic MLOps &
- 3. Advanced
- 4. Powerful visualisation 5. CERN-wide access

- **Width 256 (2.30 M params):**

**HPO MATTERS** Significant performance dependency on HP **ATLAS** Simulation Preliminary, μP GN2 with LR initial 1e-05  $2^{-14} 2^{-13} 2^{-12} 2^{-11} 2^{-10} 2^{-9} 2^{-10}$ LR max GN2 GN2 Sub-optimal Optimal

 $D_b =$  $f_c p_c + (1 - f_c) p_{light}$ 

KubeFlow

Stable for µP, blows up for SP!

### **ADVANTAGES**

**Maximal Update Parametrization (µP)**  $r \rightarrow$  simple neural architecture search small → large models

B

2 GPUs  $\rightarrow$  39 min / epoch 1 GPU  $\rightarrow$  20 min / epoch Width 64 (0.29 M params):  $\succ$  With µP, 4 small-model tests  $\approx$  1 full-model test

![](_page_0_Figure_33.jpeg)