Conclusion & Outlook

This approach could provide a more accurate reference than established methods or PYTHIA estimations. It could be helpful for future heavy-ion runs where no explicit pp reference measurements are foreseen. In the future, the procedure could be extended to the measured correlation of N_{ch} and p_{T} to further constrain the particle production or to identified particle spectra in other analyses.

Motivation Approach

PYTHIA Comparison $\sum_{\square}^{2.5}$ pp collisions, charged particles pp collisions, charged particles

Model Tuning & Uncertainties

Regression performance :

model

power-law interpolation at high p_{τ} - Reduced fluctuations and

matching with PYTHIA at low p_{τ}

to describe the simulation within its uncertainties

Model Application

ׅׅ֚֚֕֡֡֡֡֡֡֡֡֝֡

ׇ֬֕

with deep neural networks Maria A. Calmon Behling¹, Jerome Jung¹, Mario Krüger¹ and Henner Büsching¹

Xe−Xe at √s = 5.44 TeV [5]: - Consistent with established

O−O at √s = 6.37 TeV [6]:

- Extending the pp reference to much lower p_{t}
- At high p_{γ} , good agreement with functional interpolation & theory

January 2024 maria.calmon@cern.ch 1 Goethe-Universität Frankfurt

Modeling charged-particle spectra in pp collisions

PYTHIA-based DNN predic�ons ALICE-based DNN predic�ons

Deep neural networks (DNNs) provide a purely data-driven alternative to predict these observables at unmeasured energies \rightarrow Proof of principle with provided by MC-based study in [3]

 \rightarrow Better training performance and stability

[1] ALICE, "Multiplicity dependence of charged-particle production in pp, p-Pb, Xe-Xe and Pb-Pb collisions at the LHC", Phys. Lett. B 845 (2023) 138110 [5] ALICE, "Transverse momentum spectra and nuclear modification facto [2] P. Skands, S. Carrazza, and J. Rojo, "Tuning PYTHIA 8.1: the Monash 2013 Tune", Eur. Phys. J. C 74 no. 8, (2014) 3024, [3] E. Shokr, A. De Roeck, and M. A. Mahmoud, "Modeling of $N_{\rm ch}$ and $p_{\rm T}$ distributions in pp collisions using a DNN", Sci. Rep. 12 no. 1, (2022) 8449. [4] R. Garnett, Bayesian Optimization. Cambridge University Press, 2023 [6] J. Brewer, A. Huss, A. Mazeliauskas, and W. van der Schee, "Ratios of jet and hadron spectra at LHC energies: Measuring high- $p_{_{\rm T}}$ suppression without a pp reference", Phys. Rev. D 105 no. 7, (2022) 074040

٦

GOETHE S UNIVERSITÄT FRANKFURT AM MAIN

The simulations are compared to a wide range of energies: - For lower N_{ch} (< 20) and p_{T} (< 1 GeV/c), PYTHIA deviates from the predictions by up to 20% for all studied energies - At higher N_{ch} and p_{T} , the comparison indicates an energy

Fundamental observables, like the inclusive charged-particle multiplicity (N_{ch}) distributions and transverse momentum (p_{T}) spectra, precisely characterize the final state of pp collisions

ALICE published a comprehensive dataset of N_{ch} distributions and p_{T} spectra within 0.15 GeV/ $c < p_{\text{T}} < 10$ GeV/c and $|\eta| < 0.8$ for pp collisions ranging from \sqrt{s} = 2.76-13 TeV [1]

- Extrapolation capability evaluated with PYTHIA simulations
	- \rightarrow ALICE-equivalent energies (training/validation)
	- \rightarrow Selected energies within 0.5 100 TeV (test)
- Model equivalent energies (crammig) vandation)

→ Selected energies within 0.5 100 TeV (test)

 Target score: Quadratic mean of validation MAE & test MAE
- \rightarrow Best-performing architecture retrained on ALICE data

Those results demonstrate that predicting the collision-energy dependence of these observables remains a challenging task for PYTHIA simulations using the Monash13 tune [2]

- Spread of Top5 perfroming hyperparameter configurations
- Ensemble of 20 random initializations of the top model
- Good description of training data with deviation < 2%
- Extrapolation for 2.76 ≤ √*s* ≤ 20 TeV within 5%
- Inside 1.5 ≤ √*s* ≤ 27 TeV accuracy drops to 10%
- For the highest and lowest energeis the model fails
- $-$ Logarithmic scaling of p_{τ} , N_{ch} and \sqrt{s}
- → More linear tail for better extrapolation capabilities
- Data shuffeling and splitting into training and validation sets (80% / 20%) - Data augementation by redinifing each initial data point N times within its range of uncertainties

- Similar performance compared to PYTHIA-based model
- All available data within their corresponding uncertainties
- Solid extrapolation in N_{ch} and p_{τ} by about 20%

 \rightarrow Reliable interpolation to unmeasured energies

Model sketch:

Ratio of PYTHIA to DNN predictions:

- Extract relative change of the p_{τ} spectra at different energies
- Apply to a chosen baseline pp measurement
	- \rightarrow Allows consistent event class definition between pp and AA

- dependence of PYTHIA's accuracy decreasing beyond the energy range used in the tuning process
- The trend observed for the training energies is further extended to unmeasured energies
- Especially at lower energies a larger tension is observed
- \rightarrow These deviations between the PYTHIA simulations and the data-driven predictions could provide feedback for future PYTHIA tunes

- Fully connected DNN implemented

with Tensorflow & Keras

- Two separate models for the

prediction of N_{ch} and p_{T} yields

− Two inputs each $N_{\text{ch}}|p_{\text{T}}$ and √*s*

- Fixed number of nodes per layer

- Model configuration determined

in hyperparameter scan

Hyperparameter scan:

Bayesian-optimization [4] search for best model architecture

Uncertainty estimation:

Two different sources are added in quadrature

Data preparation:

Retrained on ALICE data:

Construction of pp reference spectra for the nuclear modification factor:

A suitable baseline provided by the ALICE measurement at √*s* = 5.02 TeV → High precision & close in energy to the interpolation targets