Modeling charged-particle spectra in pp collisions

with deep neural networks Maria A. Calmon Behling¹, Jerome Jung¹, Mario Krüger¹ and Henner Büsching¹

Motivation

Fundamental observables, like the inclusive charged-particle multiplicity (N_{ch}) distributions and transverse momentum (p_{τ}) spectra, precisely characterize the final state of pp collisions

ALICE published a comprehensive dataset of N_{ch} distributions and p_{τ} spectra within 0.15 GeV/ $c < p_{\tau} < 10$ GeV/c and $|\eta| < 0.8$ for pp collisions ranging from $\sqrt{s} = 2.76-13$ TeV [1]

Those results demonstrate that predicting the collision-energy dependence of these observables remains a challenging task for PYTHIA simulations using the Monash13 tune [2]

Approach

- Fully connected DNN implemented

with Tensorflow & Keras

in hyperparameter scan

- Two separate models for the

prediction of N_{ch} and p_{T} yields

- Fixed number of nodes per layer

- Model configuration determined

Model sketch:

Data preparation:

- Logarithmic scaling of p_{T} , N_{ch} and \sqrt{s}
- \rightarrow More linear tail for better extrapolation capabilities
- Data shuffeling and splitting into training and validation sets (80% / 20%) - Data augementation by redinifing each initial data point N times within its range of uncertainties

Deep neural networks (DNNs) provide a purely data-driven alternative to predict these observables at unmeasured energies \rightarrow Proof of principle with provided by MC-based study in [3]

 \rightarrow Better training performance and stability

Model Tuning & Uncertainties

Hyperparameter scan:

Bayesian-optimization [4] search for best model architecture

	sa	mpling: discrete value	es
layers	neurons per layer	activation function	initializer
2	32	TanH (TH)	RandomUniform (RU)
3	64	ReLU (RE)	RandomNormal (RN)
4	128	SeLU (SE)	TruncatedNormal (TN)
5	256	Swish (SW)	GlorotUniform (GN)
	512	Mish(MI)	GlorotNormal (GU)
		Softplus (SP)	
	sampl	ing: intervals (logarit	hmic)
	λ_1	λ_2	learning rate (lr)
min	$5 \cdot 10^{-8}$	$5 \cdot 10^{-8}$	$1 \cdot 10^{-5}$
max	$5 \cdot 10^{-1}$	$5\cdot 10^{-1}$	$1 \cdot 10^{-3}$

- Extrapolation capability evaluated with PYTHIA simulations
 - \rightarrow ALICE-equivalent energies (training/validation)
 - \rightarrow Selected energies within 0.5 100 TeV (test)
- Target score: Quadratic mean of validation MAE & test MAE
- \rightarrow Best-performing architecture retrained on ALICE data

PYTHIA-based DNN predictions

ALICE-based DNN predictions

Regression performance :

mode

sim

Retrained on ALICE data:

Uncertainty estimation:

Two different sources are added in quadrature

- Spread of Top5 perfroming hyperparameter configurations
- Ensemble of 20 random initializations of the top model
- Good description of training data with deviation < 2%
- Extrapolation for $2.76 \le \sqrt{s} \le 20$ TeV within 5%
- Inside $1.5 \le \sqrt{s} \le 27$ TeV accuracy drops to 10%
- For the highest and lowest energeis the model fails

to describe the simulation within its uncertainties

- Similar performance compared to PYTHIA-based model
- All available data within their corresponding uncertainties
- Solid extrapolation in N_{ch} and p_{T} by about 20%

 \rightarrow Reliable interpolation to unmeasured energies

TeV

37

Ö

0.8

0.6

CO 1.6

Ratio of PYTHIA to DNN predictions:

The simulations are compared to a wide range of energies: - For lower N_{ch} (< 20) and p_{τ} (< 1 GeV/c), PYTHIA deviates from the predictions by up to 20% for all studied energies - At higher N_{ch} and p_{τ} , the comparison indicates an energy

Construction of pp reference spectra for the nuclear modification factor: 02

- Extract relative change of the p_{τ} spectra at different energies
- Apply to a chosen baseline pp measurement
 - \rightarrow Allows consistent event class definition between pp and AA

A suitable baseline provided by the ALICE measurement at $\sqrt{s} = 5.02$ TeV \rightarrow High precision & close in energy to the interpolation targets

Xe–Xe at √s = 5.44 TeV [5]:

- Consistent with established power-law interpolation at high p_{τ} - Reduced fluctuations and matching with PYTHIA at low p_{τ}

Model Application

charged particles, $|\eta| < 0.8$

• PYTHIA [1]

ALICE-based DNN

PYTHIA-based DNN

pp reference spectrum, $\sqrt{s} = 5.44 \text{ TeV}$

• ALICE power-law interpolation [1]

 $p_{\rm T}({\rm GeV}/c)$

[1] Phys. Lett. B 788 (2019) 166-179

TeV

O–O at √s = 6.37 TeV [6]:

ALICE-based DNN

- Extending the pp reference to much lower p_{τ}

NLO pQCD calculations [1]

interpolated measurements [1]

10

 $p_{\rm T}({\rm GeV}/c)$

- At high p_{τ} , good agreement with functional interpolation & theory

pp reference spectrum, $\sqrt{s} = 6.37$ TeV

[1] Phys. Rev. D 105 no. 7, (2022) 074040

charged particles, $|\eta| < 0.8$

- dependence of PYTHIA's accuracy decreasing beyond the energy range used in the tuning process
- The trend observed for the training energies is further extended to unmeasured energies - Especially at lower energies a larger tension is observed
- \rightarrow These deviations between the PYTHIA simulations and the data-driven predictions could provide feedback for future PYTHIA tunes

Conclusion & Outlook

This approach could provide a more accurate reference than established methods or PYTHIA estimations. It could be helpful for future heavy-ion runs where no explicit pp reference measurements are foreseen. In the future, the procedure could be extended to the measured correlation of N_{ch} and p_{T} to further constrain the particle production or to identified particle spectra in other analyses.

[1] ALICE, "Multiplicity dependence of charged-particle production in pp, p-Pb, Xe-Xe and Pb-Pb collisions at the LHC", Phys. Lett. B 845 (2023) 138110 [5] ALICE, "Transverse momentum spectra and nuclear modification factors of charged particles in Xe-Xe collisions at the LHC", Phys. Lett. B 845 (2023) 138110 [5] ALICE, "Transverse momentum spectra and nuclear modification factors of charged particles in Xe-Xe collisions at Vs = 5.44 TeV", Phys. Lett. B 788 (2019) 166–179 [2] P. Skands, S. Carrazza, and J. Rojo, "Tuning PYTHIA 8.1: the Monash 2013 Tune", Eur. Phys. J. C 74 no. 8, (2014) 3024, [6] J. Brewer, A. Huss, A. Mazeliauskas, and W. van der Schee, "Ratios of jet and hadron spectra at LHC energies: Measuring high-p_x suppression without a pp [3] E. Shokr, A. De Roeck, and M. A. Mahmoud, "Modeling of N_{ch} and p_{τ} distributions in pp collisions using a DNN", Sci. Rep. 12 no. 1, (2022) 8449. reference", Phys. Rev. D 105 no. 7, (2022) 074040 [4] R. Garnett, Bayesian Optimization. Cambridge University Press, 2023

GOETHE UNIVERSITAT FRANKFURT AM MAIN

January 2024 maria.calmon@cern.ch ¹Goethe-Universität Frankfurt