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General strategy

Abstract:

e Full statistical models’ encapsulate the complete information of an
experimental result, including the likelihood function given observed
data.

e Since a few years ago ATLAS started publishing statistical models
that can be reused via the pyhf framework?. pyi-f

e In LHC reinterpretation we are often mainly interested on the profile
likelihood given a signal strength.

e Computations directly using pyhf's full likelihoods can take a
significant amount of time.

e To fully leverage from the precision obtained from full statistical
models without compromising speed, we propose to learn the
profiled likelihood functions with Neural Networks (NNs).

e \We show that such functions can be well described with simple
NNs, published in the ONNX format, and easily used by different
reinterpretation tools.

LHC liRelihoods in a nutshell

From Bayes theorem, an statistical model (SM) is
defined as:

P(®,x) = P.(x| O)zg(®) = Pg(® | x)7 (x)
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An LHC SM usually looks like:
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With SMs we perform global fits, exclude BSM models, find upper limits,
search for SM deviations, etc.

The Profile Likelthood

e In new physics searches reinterpretation, we are A
often interested in the Profile Likelihood (PL). —  [(x|u; 0(u))
e The PL is defined as a function where the
nuisance parameters are fixed such that the
likelihood is maximised given a signal strength u.
e In the case of positive signal u=1, otherwise, if
data is Standard Model like u=0.
e The PL is a function of the signal yields (data), n_.

e With the PL we construct Log

Likelihood Ratio (LLR) tests. — f0) = — 21 L(p; (p))
e Depending on how the PL is fitted and H) = b 1(4 ({)( D)

defined, we can derive upper limits, @, 0

exclusion confidence levels and

discoveries.

Example likelithoods

ATLAS-SUSY-2018-04

e Search for direct stau production in events with two -leptons
e Number of SRs: 2.

e DOI: 10.1103/PhysRevD.101.032009

ATLAS-SUSY-2019-08

e Search for direct production of e-winos in final states with 1 lepton,
MET and a Higgs boson decaying into 2 -jets

e Number of SRs : 9.

e DOI: https://doi.org/10.17182/hepdata.90607.v4
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Sampling: MCMC Metropolis-Hastings runs towards the min(L) and
max(L), to cover the full parameter space.

The Input is n_ and the Output is -log(L) .

Training: All models were Multi-Layer Perceptrons (MPE) trained
using Mean Squared Error loss function, ADAM optimiser and
LeakyRelLU activation functions. Data was divided as
training-validation-test on a 60-20-20 scheme. Observed and Expected
Likelihood functions are trained separately.

Testing: The accuracy of the NN models was measured with the Mean
(MAPE) and Max (MaxAPE) Absolute Percentage Error.

Saving: After training, the best models for each analysis are ensemble
together and saved as ONNX files.

Usage: The NN likelihoods will be available for statistical studies via

an Spey° backend. (&}
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Conclusions

Multivariate phenomenological studies require efficient handling of
likelihoods.

NNs provide an orders of magnitude faster alternative for LHC
likelihood publication. From several minutes to less than a second
per point!

Profile likelihoods are easily learnable by NNs.

They can easily be integrated into modern reinterpretation

frameworks, €. g. o RS
As a plus, we can obtain max(L) directly from the gradients of the NNs
(differential programming).
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