J. Krupa, B. Maier, M. Kagan, P. Harris, M. Pierini, N. Woodward
Inter-experiment Machine Learning Workshop, CERN, 1.2.2024

Introduction
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Methods

« Dataset: 100M QCD/H/W/Z jets re-showed with pythia8 and herwig7 tunes
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Re-simulation-based self-supervised
Iearnlng (RS3L): a backbone for HEP ¢
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1. SSL discriminates between Higgs and QCD + mitigates variations with simulator
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4. The Wasserstein distance
between the classifier score as

evaluated on nominal and herwig
jets is reduced by RS3L — SSL

2. SSL reaches fully-supervised
performance with fewer examples
on in-domain classification

Higgs efficiency 0.3 0.5 0.7 can prOVIde more rObUSt
RS3L + FT (3M, floating) 1340 379 135 observables
. @

Fully-supervised (8M) 1271. 378 131 £ . [rewrom How much work
) “"“' W does it take to
g 15| Herwig7(pl transform pythia

- i 05F distribution into
3. SSL surpasses fully-supervised o S il

performance on out-of-domain RS3L feature 4
classification (W—qq vs QCD)

Training setup Herwig
W efficiency 0.3 05 0.7 Fine-tuned (3M, fixed) 7.20 x10~3
Fine-tuned (3M, floating) 7.80 x1073
RS3L + FT (3M) 1893 505 147 Fully-supervised (8M) 9.40 x10~3

Fully-supervised (3M) 1781 457 134

Augmented Cat A

Conclusions

SSL has large potential in
downstream HEP applications

Both in-domain and out-of-domain
A path towards a foundation model
for LHC physics

Can we train on data”
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