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Can we finetune?
J
\

e
NG

Architecture Results

Strategies from modern ML such as large-scale pretraining, finetuning,

Jet Const II S+HLF V+HLF V-Only domain adaptation and high-dimensional embeddings (green curves) can lead

to significant performance gains over the traditional HEP approach.
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The Jet Backbone plays the role of a Foundation Model.
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Performance gains

Clear performance
hierarchy between training
strategies: depending on the
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Do high-dim embeddings hold more (useful) info than Xbb+HL features?
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