Attention to the strengths of physics interactions

Enhanced Deep Learning Event Classification for Particle Physics Experiments

Polina Moskvitina

Sascha Caron, Clara Nellist, Roberto Ruiz de Austri, Rob Verheyen, Zhongyi Zhang

The four-top-quarks and ttH production at LHC

Production of **four top quarks** is very rare

- NLO QCD: $\sigma(t\bar{t}t\bar{t}) = 12 \text{ fb} \pm 20\%$ [JHEP02(2018)031]
- NLO+NLL: $\sigma(t\bar{t}t\bar{t}) = 13.4 \text{ fb} \pm 11\%$ [arXiv:2212.03259]

Examples of Feynman diagrams for SM $t\bar{t}t\bar{t}$ production at leading order in QCD and via an off-shell Higgs boson mediator

First observation of $t\bar{t}t\bar{t}$ production with an observed (expected) significance of 6.1 o (4.3 o) with GNN by ATLAS [Eur. Phys. J. C 83, 496 (2023)] **5.6σ (4.9σ)** with **BDT** by **CMS** [Phys. Lett. B 847 (2023) 138290]

The **Top-top-Higgs** has a small cross section (1/100 ggF) $\sigma(t\bar{t}H) \sim 0.507 \text{ pb}$

Example tree-level Feynman diagrams for the pp $\rightarrow t\bar{t}H$

Observation of $t\bar{t}H$ production 6.3σ (5.1σ) with BDT by ATLAS [Phys. Lett. B 784 (2018) 173] **5.2σ (4.2σ)** with **BDT** by **CMS** [Phys. Rev. Lett. 120, 231801]

The four-top decays and Background composition

- Simulated pp Collisions at $\sqrt{S} = 13$ TeV
- The most sensitive channel for **four-top** is: • Multilepton final state: 2 Leptons Same Sign and 3 Leptons (2LSS/3L), 13% branching ration, highest sensitivity – observation $N_{\rm max}$ FCN, BDT 12CNN, PN, ParT no limits 18

 $N_{\rm max}$ – the maximum number of objects in an event

- event ID; process ID; weight; E_T ; ϕ_{E_T} ;
 - $obj_1, E_1, p_{T_1}, \eta_1, \phi_1; obj_2, E_2, p_{T_2}, \eta_2, \phi_2; \dots$
- All other kinematic variables can be calculated from four-vectors

Signal region:

 \geq 6 jets \geq 2b-jets and H_T \geq 500 GeV

Signal process:

- $t\overline{t}t\overline{t}$

Physical backgrounds:

- $t\overline{t}Z$, $t\overline{t}H$, $t\overline{t}W$, $t\overline{t}WW$

Used for a second analysis as a Signal

Nik hef

arXiv:2211.05143

The energy dependence of the coupling constants

Transformers

Pairwise features

Include pairwise features in **Par**ticle **T**ransformer through a trainable embedding U_{ij} for particles *i* and *j*

We end up using :

ParT uses high level features for better performance

- 1. $\Delta = \sqrt{(y_a y_b)^2 + (\phi_a + \phi_b)^2}$ 2. $k_t = min(p_{T,a}, p_{T,b})\Delta$
- 3. $z = min(p_{T,a}, p_{T,b})/(p_{T,a}, p_{T,b})$
- 4. $m^2 = (E_a + E_b)^2 ||p_a + p_b||^2$

 m_{ii} , ΔR_{ii} and dynamically calculated **coupling constants** of interaction terms (i.e. a feature that is coupling constant when i and jare components of a **SM** current, and 0 otherwise)

 $\mathrm{PN}_{\mathrm{int.\,SMids}}$

0.8489(1)

 $\mathrm{PN}_{\mathrm{int.\,SM\,const}}$

0.8505(0)

 $\mathrm{PN}_{\mathrm{int.\,SM}}$

0.8523(0)

• $g_e = 0.31$ for the electromagnetic force in photon interactions

• These were also tested in **LightGBM**

List of Models Used

Results for the $t\bar{t}t\bar{t}$ and $t\bar{t}H$ signals

The AUC for both 4 top and top-top-Higgs signal detection

The models containing both the pairwise features and the SM interaction matrix performs best. The background can be significantly reduced by about 30% compared to a PN (GNN)

		PN	$\mathrm{PN}_{\mathrm{int.}}$	${ m PN}_{ m int.~SMids}$	${\rm PN}_{\rm int.SMconst}$	${ m PN}_{ m int.SM}$
	AUC	0.8471(1)	0.8729(0)	0.8725(0)	0.8727(0)	0.8739(0)
$t\overline{t}t\overline{t}$	$\epsilon_B(\epsilon_S = 0.7)$	0.1758(3)	0.1387(1)	0.1377(0)	0.1384(0)	0.1369(1)
	$\epsilon_B(\epsilon_S = 0.3)$	0.0207(0)	0.0182(0)	0.0178(0)	0.0178(0)	0.0176(0)
		ParT	$\operatorname{ParT}_{\operatorname{int.}}$	$\operatorname{ParT}_{\operatorname{int.SMids}}$	$\mathrm{ParT}_{\mathrm{int.SMconst}}$	$\operatorname{ParT_{int}}_{SM}$
	AUC	0.8404(0)	0.8708(0)	0.8715(0)	0.8717(0)	0.8732(0)
$t\overline{t}t\overline{t}$	$\epsilon_B(\epsilon_S = 0.7)$	0.1842(3)	0.1394(0)	0.1389(2)	0.1372(1)	0.1366(0)
	$\epsilon_B(\epsilon_S = 0.3)$	0.0230(0)	0.0172(0)	0.0180(0)	0.0167(0)	0.0169 <mark>(</mark> 0) 🗸

 $t\bar{t} + h$ $\epsilon_B(\epsilon_S = 0.7)$ 0.2292(1)0.1787(0)0.1764(3)0.1785(1)0.1733(1) $\epsilon_B(\epsilon_S = 0.3)$ 0.0471(1)0.0345(0)0.0343(1)0.0350(0)0.0340(0) $\overline{Par}T_{int.\,SM\,const}$ ParT $\operatorname{ParT}_{\operatorname{int.SM}}$ $ParT_{int.}$ $\operatorname{ParT_{int.\,SMids}}$ $\overline{0.8532(0)}$ AUC 0.8058(1)0.8507(0)0.8473(0)0.8497(0)0.2399(2) $\epsilon_B(\epsilon_S = 0.7)$ $t\overline{t} + h$ 0.1794(1)0.1836(3)0.1801(1)0.1748(1)0.0502(0) $\epsilon_B(\epsilon_S = 0.3)$ 0.0357(0) - 0.0355(1)0.0367(0)0.0351(0)We asked the question: \rightarrow "**Do the models saturate**?" -The Signal efficiency VS background rejection PN**PN and ParT Models** $\mathrm{PN}_{\mathrm{int.}}$ _._...

PN

0.8146(2)

 $PN_{int.}$

0.8505(0)

AUC

