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Quantum
Computing

[..] “Nature isn't
classical, dammit,
and 1f you want to
make a simulation
of nature, you'd
better make it
quantum
mechanical..” [1]

[1] Richard P. Feynman,
Department of Physics,
California Institute of
Technology,
International Journal of

Theoretical Physics, Vol 21,

Nos. 6/7, 1982
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Classical Computation Quantum Computation
= Based on classical binary logic = New frontier of computation
= Reached incredibly peaks since late 40s = Started in early 80s
o Many problems still can not be = First prototypal QC available since 2010s
addressed adequately o Stillin NISQ (Noisy Intermediate Scale

Quantum) era




The Second Quantum Revolution and Quantum Computing

* Quantum Mechanic principles are
exploited to develop new technology

* Create “artificial” quantum states for
a range of applications (single photons,
trapped ions, superconductors, etc.)

* 1964: Bell inequalities prove that no
theory based on local hidden variables
(realism) can reproduce QM results

* Major step confirming the possibility of
using distant entangled photons as a
guantum information resource

Quantum
Computing
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See Institute of Quantum Computing, U. of Waterloo,
https://uwaterloo.ca/institute-for-quantum-computing/quantum-101/quantum-information-science-and-technology/what-qubit
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Superconducting Qubits

phase qubit flux qubit charge qubit - transmon cat-qubits
IO C """""" |

4@7 VVa 4
Ef ! EJ HighQ

Ezratty, O. Perspective on ZAN , .
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superconducting qubit
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|0) and |[1) two energy levels two superconducting two levels of charge pairs of entangled microwave
qubits in a potential well current directions of Cooper pairs photons in a cavity
quantum gates micro-waves magnetic field micro-waves micro-waves
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Development Roadmap

2016-2019 e

Run quantum circuits
on the IBM Quantum Platform

Data Scientist

Researchers

Quantum
Physicist

IBM Quantum Experience

Early

Albatross
16 qubits

Canary
5 qubits

Penguin
20 qubits

Innovation Roadmap

Software IBM Qiskit
Innovation QLlantU ue Circuit and operator
Experience API with compilation
to multiple targets
Hardware Early Falcon
Innovation

Canary
5 qubits

Penguin
20 qubits

Demonstrate scaling
with I/O routing with
Bump bonds

Albatross
16 qubits

Prototype
53 qubits

. Executed by IBM
@ On target

IBM Quantum / © 2023 IBM Corporation

Prototype
53 qubits

2020 @

Release multi-
dimensional
roadmap publicly
with initial aim
focused on scaling

Falcon

Benchmarking
27 qubits

Application ¥
modules

Modules for domain
specific application
and algorithm
workflows

Hummingbird

Demonstrate scaling
with multiplexing
readout

2021 e

Enhancing quantum
execution speed by
100x with Qiskit
Runtime

Qiskit Runtime

QASM3

Qiskit
Runtime
Performance and

abstract through
Primitives

Eagle

Demonstrate scaling
with MLW and TSV

2022 @

Bring dynamic
circuits to unlock
more computations

mic circuits

agle

Benchmarking
127 qubits

Serverless (J

Demonstrate
concepts of
quantum centric-
supercomputing

Osprey
Enabling scaling
with high density
signal delivery

2023 @

Enhancing quantum
execution speed by
5x with quantum
serverless and
Execution modes

Middleware

(o] um Transpiler Service @ Resource Circuit Knitting x P elligent Orchestrati
Serverless Management

Execution Modes

Alenhanced ¥
quantum

Prototype
demonstrations of AI
enhanced circuit
transpilation

Condor

Single system
scaling and fridge
capacity

Heron
Architecture
based on tunable-
couplers

2024

Improving quantum
circuit quality and
speed to allow 5K
gates with
parametric circuits

Platform

Code assistant O]

Heron (5K) ®
Error Mitigation

5k gates
133 qubits

Classical modular

133x3 = 399 qubits

N
Resource O]
management
System partitioning to

enable parallel
execution

Flamingo ®

Demonstrate scaling
with modular
connectors

Crosshill

m- coupler

2025

Enhancing quantum
execution speed and
parallelization with
partitioning and
quantum modularity

Functions

Flamingo (5K)
Error Mitigation

5k gates
156 qubits

Quantum modular

156x7 = 1092 qubits

Scalable circuit
knitting

Circuit partitioning
with classical

reconstruction at HPC
scale

Kookaburra

Demonstrate scaling

with nonlocal c-coupler

2026

Improving quantum
circuit quality to
allow 7.5K gates

Mapping Collection

Flamingo (7.5K)
Error Mitigation

7.5k gates
156 qubits

um modular

156x7 = 1092 qubits

Error correction
decoder

Demonstration of a
quantum system with
real-time error
correction decoder

Demonstrate path to
improved quality with
logical memory

2027

Improving quantum
circuit quality to
allow 10K gates

Specific Libraries

Flamingo (10K)
Error Mitigation

10k gates
156 qubits

Quantum modular

156x7 = 1092 qubits

Cockatoo

Demonstrate path to
improved quality with
logical communication

2028

Improving quantum
circuit quality to
allow 15K gates

Flamingo (15K)
Error Mitigation

15k gates
156 qubits

Quantum modular

156x7 = 1092 qubits

Starling

Demonstrate path to
improved quality
with logical gates

2029

Improving quantum
circuit quality to
allow 100M gates

Starling (100M)
Error correction

100M gates
200 qubits

Error corrected
modularity

IBM Quantum

2033+

Beyond 2033, quantum-
centric supercomputers
willinclude 1000’s of
logical qubits unlocking
the full power of
quantum computing

General purpose
QC libraries

Blue Jay (1B)
Error correction

1B gates
2000 qubits

Error corrected
modularity



Noisy Intermediate-Scale Quantum devices Trapped ion technology: 010

with all-to-all connectivity
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* De-coherence, measurement errors or gate level
errors (noise)

. e . ®-0-6-0 0-0-0-0-0-0-0-0-0-0-0
» Specific error mitigation techniques é é é &
* Prefer algorithms robust against noise é—@-?—@-é—@-?—@-é—@-@-@-é—@-?
: o o o
* Problem size 8-0-0-0-0-0-0-0-0-0-0-0-0-0-0
e . : : o o o ®
* |nitially integrated in hybrid quantum-classical 6-0-0 0-0-0-0-0-0-0-(-0-0-0-
infrastructure (HPC + QC) ® ® o

* Quantum Processing Units as new “hardware
accelerators”

Superconducting qubits:
IBM Torino — 133 qubits
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Quantum Information Theory Quantum logic gates

= Single qubit operations .
) . . _ 11 1
o Hadamard gate: creation of superposition H = \/7(1 _1)
o Pauli gates: 7 rotations along main axes

Unit of information

|0)
@
_ (0 1 _ (0 —i /1 o0
a"_(1 o)’ ay_(i o)’ az_(o _1)
= Two-qubit operations
10 00
[0 1 0 O 7
CNOT = (0 0 0 1)
0 01 0 .
IS - creation of entanglement
1) 100 O
_ (0 1 0 0
bit C“”‘(o 0 1 0_) ]
0 0 0 e7'¢
A
| \ . . : : :
9 0 = Generic multi-qubit operations: decomposed in
b) = a|0) +B8|1) = (COSEIO) +eid Sin5|1>)eiy single-qubit and two-qubit gates
where o, € Cand 6, ¢,y € R = Universal gate sets
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Quantum Information Theory

Composing quantum gates: quantum circuits

= Set of actions to be performed to the selected qubits
o qubits initialization
o single-qubit gates, multi-qubit gates
o Mmeasurements

Barriers

7N\
- - R
g1 % Quantum registry
« fii—o1l- ?

3 w0 “1 iz

C = ]- Classical registry

Quantum gates Measurement gates
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Principles of quantum computation

= Quantum algorithm: set of quantum circuits performing
certain task

o Purely quantum, e.g. Shor
o Hybrid classical-quantum, e.g. VOE

= Quantum Simulation: simulation of time evolution of
guantum system

o Analog Simulator
o Digital Simulator: quantum logic gates, more flexible




Quantum Computing

Do classically intractable computations
efficiently on a Quantum Computer
leveraging Quantum Effects
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Problems for a quantum computer

\4

Modeling nature at the quantum level Mathematics

- }
Quant.um chemistry, Algebraic algorithms Empirical heuristic
I\/!atenal SLIenee ?nd with provable speed-ups algorithms
High energy physics
- Shor’s Algorithm - Optimization
- Grover’s Algorithm - Machine learning
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Quantum potential... and computer science

Also, non-classical
lati -
Can enable speed-up corre a;:)or: sur;??:)ips)eed P
though highly parallel P

computations

Quantum Superposition State Quantum Entanglement
(here: Bell state)

Operations (gates) are unitary transformations > reversible computing?

Output is the result of a measurement according to Born rule = stochastic computation ?
No-cloning theorem - information security

Quantum state coherence and isolation = computation stability and errors

Qubit state collapses = reproducibility?
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Agenda

* Part 1: A brief introduction to Quantum Computing
e Part 2: Quantum Computing for Machine Learning
* Part 3: Quantum Machine Learning for HEP
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What is Quantum Machine Learning?

31.01.24




Fields in Quantum Computing

Type of algorithm

Type of data

Source: Qiskit Textbook
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Fields in Quantum Computing

Type of algorithm

Simulation of Quantum

Simulation of Quantum Systems using a Quantum
Systems using classical ML Computer

I Type of data

Source: Qiskit Textbook
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Fields in Quantum Computing

T £ alaorith Here: focus on quantum algorithm
ype of algorithm with classical input data

Type of data

Source: Qiskit Textbook
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Fields in Quantum Machine Learning (QML)

Supervised

Learning '\ /

|

Reinforcement
Learning

QUANTUM
TECHNOLOGY
INITIATIVE

31.01.24

Unsupervised
Learning

Source: Qiskit Textbook
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Fields in Quantum Machine Learning (QML)

Supervised Unsupervised

Learning '\ / Learning

e.g., Quantum Classifier: aims e.g., Quantum Generative
to learn input-output relation Models: aims to learn the
of labeled dataset f: x;, = underlying probability
Xout DY Optimizing quantum distribution m(y) of a given

network data set and generates
l samples from it using
Reinforcement quantum network
Learning

e.g., Quantum Reinforcement Learning: find
policy for agent that maximizes reward (expected
reward computed using QC)

Source: Qiskit Textbook
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What is Quantum Advantage in QML? =

. . . (- 1
Multiple considerations:

1. Runtime speed-up

2. Sample complexity 1>

Bloch sphere: only the marked points
are produced by the Clifford operators
acting on a computational basis state

3. Representational power

This includes considerations regarding classical intractability:

Focus on Quantum Circuits that are not efficiently simulable classically

Nielsen, Michael A., and Isaac Chuang. "Quantum computation and quantum information." (2002).

Gottesman, Daniel. "The Heisenberg representation of quantum computers." arXiv preprint quant-ph/9807006 (1998).
See also: - Klbler, Jonas, Simon Buchholz, and Bernhard Scholkopf. "The inductive bias of quantum

kernels." Advances in Neural Information Processing Systems 34 (2021): 12661-12673.

- Huang, HY., Broughton, M., Mohseni, M. et al. Power of data in quantum machine learning. Nat Commun 12, 2631 (2021).
https://doi.org/10.1038/s41467-021-22539-9
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Quantum Machine Learning Lyfecycle

The quantum advantage of
many known QML

algorithms is impeded by an
input or output bottleneck

Data

Trainability (BP...)

O O

ue) |- = |t |Ux6)| - - UL(6L) -

S
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Model
Interpretation

Model

Testing

Preparation

Data Reduction

Model Data Encoding [1,2,3]
Definition Read Out
Qo
q1

Model
Training

[1] Robust data encodings for quantum classifiers, Ryan
LaRose and Brian Coyle, Phys. Rev. A 102, 032420

[2] Quantum convolutional neural network for classical data
classification, https://arxiv.org/pdf/2108.00661.pdf

[3] Quantum Support Vector Machines for Continuum
Suppression in B Meson Decays,
https://arxiv.org/abs/2103.12257



https://arxiv.org/pdf/2108.00661.pdf
https://arxiv.org/abs/2103.12257

Models

Feature maps as quantum kernels
Classical kernel-based training (convex losses)

Identify classes of kernels that relate to specific data
Gradient-free or gradient-based optimization structures?

. UANTUM COMPUTING
Data Embedding can be learned @

quantum

Ansatz design can leverage data symmetries? Hilbert space

)
X

Preprocessing . \
pipeline \\
} ( \ .
. M —— access via

input space X

( Cost function o measurements
10) — A= v\
: V(%) U(6)
|0> — /A= Optimizer

4 Feature Map |,, v-;:::::u )

f Image credit M. Schuld
Wedetes ¢ Build network of stochastic binary units and
eantam optimise their energy.
Representer theorem: QBM has quadratic energy function that follows

Explicit models exhibit better generalization performance
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Supervised Learning in Quantum Computing:
Quantum Classifiers

Goal: learn input-output relation of labeled data

e
“r(;‘,f): R™ —»R™ 4EZB) = Lo (R8I Ol o 280>
inpuk  hainalole wdskTS
Classical Neural Network Parametrized Quantum Circuit
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Quantum Circuits and the Born rule

Initialization:

—>initialize qubits in
computational basis state

An arbitrary quantum circuit generating the state |¥)
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Quantum Circuits and the Born rule

Evolve initial state:

—>Apply set of unitary gates that
may encode classical input data x
and include parametrized gates

An arbitrary quantum circuit generating the state |¥)
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Quantum Circuits and the Born rule

l 0)——— Quantum Measurement
100 —

— —>retrieve a classical output
07—} distribution |(x|W)|?
09— — of classical output states
|07‘-_ (with x € {0,1}") according to Born

rule

An arbitrary quantum circuit generating the state |¥)

QUANTUM
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Quantum Classifier example: Quantum Tree Tensor Network

Quantum Tree Tensor Network with generic (0. 6.3 — cos(6/2) —etA sin(0/2)
single-qubit unitary gates U(8, ¢, 1) (0,6,4) = e sin(0/2) €'t cos(6/2)

0) - {60, | o

0) - H U (62) D U(69) —o

0) - U(0s) —¢

10) Uone(x*) 1 U(04) [0 U(10) 5 U(613) Apply QTTN as binary classifier:

0) o = U(05) |- measure one qubit

0) —H U(6s) D U(611)

0)  U(67) 9

0) —H U(0s) HD— U(612) HD- U(614) HD{F

| )
|
We encode our classical Variational part See: Grant, Edward, et al.
input features here "Hierarchical quantum classifiers." npj

Quantum Information 4.1 (2018): 65.

UANTUM N .
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1 i LHCb simulatio
Quantum embedding for S oot -
° Machine Learning for b-jet charge 0.8 4
i ification. J. High . Phys.
c I a SS I Ca I d ata |2d0e2n2t’| iza(t;cagz.;.H/g Energ. Phys
https://doi.org/10.1007/JHEP08(20
22)014

=
>
2

efficiency

0.4

Compromise between exponential compression
and circuit depth

DNN (AUC = 0.754 + 0.002)
Angle Emb. {AUC = 0.748 = 0.003)
’ Amplitude Emb. (AUC - 0.705 + 0.003)

.0 T v T T
0.0 0.2 04 0.6 0.8 10

Ex: Amplitude Encoding mistag

N
1 |
b (x)) = m;xim

0.951
6 Exponential compression 2090,
Neupic < O(log(N -
qubit (log(N)) <085, Effect of different o gQg““
encoding in e HiEM
\ ] t CNN verl
a Polynomial number of gates Os auantim e HAB

Urrn@ U@ U@ Us®) U Usou® Us10)  Us(10) Ugya(1s)

ngate 0.8 O(pOIy(N)) Unitary gate
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Parameter optimization

9 - 9-’1‘75]?
t<,3\(<9)>

The parameter-shift rule (gradient-based)

— Compute partial derivative of variational circuit parameter 6, alternative to
analytical gradient computation and classical finite difference rule (numerical
errors and resource cost considerations)

Y. > ——'&(G) a A A T A T
° — - + 2> - CAO-~>
n A c
vV!JlO? r 70V °P°l{\°"‘°
Some gakes U-¢ —» Eval Circuit twi hifted
(nof dapencing, — valuate Quantum Circuit twice at shifte
on ) c%'{é_*'?mf parameters to compute gradient
Gk wn
ecaloll
bo:f exach !

Source:https://pennylane.ai/gml/demos/tutorial_stochastic_parameter_shift/
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Parameter optimization D« Q- a.kg‘(é,)
k (3

kel
Simultaneous Perturbation Stochastic Approximation (SPSA) siochashc

(gradient-free) eshmad€
of Vof

—|f gradient computation not possible, too resource-intensive,

or noise-robustness required (slower convergence but fewer function evaluations)

—Gradient is approximated by two sampling steps and parameters are perturbed in all

directions simultaneously

—_

I "
0)=4(0)+¢
‘j( ) * (N fmldﬂn wrbation https://pennylane.ai/gml/demos/

tutorial spsa

P A
9(6) = (9k+ckbk) = 9 (6 <« Ak) lterative update rule
] : 2 b comparable to classical
Ce b stochastic gradient descent

CK>’°; Akz (Ak. ’/)kz/ oy Akp)r Pt’fhalbmn vecior
(~random05 nonplanl f Gradient desced‘ f

from 2erS- mean disir.) £ SPSA £

QUANTUM : Ny |
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Challenges when using Parametrized Quantum Circuits

Efficient data handling and data embedding

Find balance: Generalization and representational power vs. Convergence
* Problem of barren plateaus and vanishing gradients in optimization landscape

«  How well can we survey the Hilbert space (expressibility)?

Current hardware limitations
* Limited number of qubits and connectivity
 Quantum Noise Effects (decoherence, measurement errors or gate-level errors)

* Efficient interplay between classical and quantum computer
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Su Yeon Chang, IEEE QCE32§

Equivariant Quantum CNN

i

1 1 Voo, = / i 74 Vage N\
A ( ! «— \
= Construct equivariant quantum CNN r
[00}|]01}[]02} |03} [30}|131}|132} [33) [03}|]02}|]01} |00} [33}]123}|113} |03}
under rotational & reflectional [ 1200|1200 1220 122 221020112 10 52122 3102
symmetry AL 120} |121}|]22}||23) i |10} [11}(]12}||13) 123}||22}|]21}||20) |31} |21}(]11}||01)}
[30}131}(132}|]33) [00}||01}(]02} |03} [33}|132}|131} |30} [30}||203}|]10} |00}
" |mproved generalization power \
I = Extended MNIST
=/ 0;0j 0.80] | TS
- : mage classification: 0.925
. . (W) 0.75 (digits 4,5) 0.900 1
Ising spins phase 08751
classification : 50791 % 0,850
= o
S 0.651 3
O 5 0.825+
2 :
¢ 0.601 + 0.800 1
= QCNN = 0.7751 ’ —— QCNN
0.55 EquivQCNN ' EquivQCNN
0501 Appr-EquivQCNN (M) 0.7501 Appr-EquivQCNN (1)
: Appr-EquivQCNN (M>) 0.7251 Appr-EquivQCNN (M2)
I R S TR R CHE S (P CHNT T T M AR T
Number of training samples (x 10) Number of training samples (x 10)

31.01.24



Non-convexity of loss landscape

Loss landscape plotted with orqviz

Non-equivariant QCNN ApprEquivQCNN

31.01.24 40



Support Vector Machine

Classification problem: find the hyperplane that better divides data classes,

defining the prediction as an inner product and trying to maximize the margins.

Xy

Linear kernel

1
X1

QUANTUM
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Radial kerne

= Polynomial scaling in training the model O (n?)
(where n is the number of training data) = improve
scalability

= Crucial to select the right kernel, but we have a
limited set of well studied kernels = help in finding
useful kernel functions.

G.James, D.Witten, T.Hastie, R. Tibshirani: An introduction to statistical learning




Quantum Kernel Estimator

Use quantum computer to:
 encode the data;

* estimate the kernel as the fidelity between
pairs of feature vectors;

* plug K;; into the Dual L, (a) and get «;

* Classical computer are then used to do the
SVM according to:

label(s) = sign(z a;yiK(x;,s)+b )

iET

V.Havlicek et al, Nature 567, 209 (2019)
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Quantum SVM

QSVM replaces the kernel of classical SVM with a quantum kernel (inner product of quantum state)

SVM Execution Flow

Prepare training dataset [ Polynomial Kernel K (x;,x;) = (xTx; + C)d

-Correspond to Feature vectors where all of monomials

Make it quantum of order d and below are in each element

Calculate kernel matrix K (x;, x;) < Classical - ,
Gaussian Kernel K(x;, x;) = exp(— %)
- Equivalent to using an infinite dimensional feature vector ¢
-Expected to contain essential feature
Determine parameters which maximize margin M ~

Quantum Kernel K (x;, xz) = [{®(x;)| D (xx))|?
Determine the classification boundary Quantum - -Conjectured to difficult to simulate classically
-Constructable without deep circuit

Classify the data for prediction

QUANTUM
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Software

=

Qiskit

®X/\N/\DU

PENNY LANE

<A NVIDIA.

CUDA.

O PyTorch
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Agenda

* Part 1:intro QC
 Part 2: QC for Quantum Machine Learning
 Part 3: QML for HEP

QUANTUM
C\E/RW IQ ) TECHNOLOGY
> INITIATIVE



How does CERN engage in Quantum Technologies?

QT4HEP * Develop technologies, * Extend and share

capabilities required by technologles uniquely
Can CERN stay CERN scientific available at CERN
out of quantum Boost development and

rogrammes
leogw CERN to adoption of QT beyond
CERN

interoperate with future
> . Use CERN reputation to
quantum infrastructures .
maximise impact

technologies?

QUANTUM
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HEP4AQT

How can CERN
contribute to
guantum
technologies?



The CERN Quantum Technology Initiative

Understanding the impact of quantum technologies in HEP

CERN QUANTUM
TECHNOLOGY
PLATFORMS

Voir en frangais

CERN meets quantum technology _°

The CERN Quantum Technology Initiative will explore the potential of devica&(\
harnessing perplexing quantum phenomena such as entanglement to era and

expand its challenging research programme

pandits challenging research prog &\c‘}‘ HYBRID QUANTUM
30 SEPTEMBER, 2020 | ByMattT\ewChaImers- \’b B COMPUTING AND
, _— , - P N ALGORITHMS

QUANTUM
NETWORKS AND
COMMUNICATIONS
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, N .: 2 p ) & &
&Y/ : a> & J : VX
v o
The AEgIS 1T antimatter trap stack. CERN’s AEgIS experiment is able to explore the multi-particle entangled nature of photons from positronium
annihilation, and is one of several examples of existing CERN research with relevance to quantum technologies. (Image: CERN)
W)\ TECHNOL 31.01.24 : Jdoi 8
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Delgado and Hamilton, arXiv:2203.03578 (2022)

™ Zoufal, et al., iQ t Inf5, 103 (2019)
Quantum Generative Models O . 2 o

Amin, et al. Physical Review X 8.2 (2018): 021050.

QGAN
QCBM Multiple implementations, mostly classical-quantum hybrid
Sample variational pure state |(0)) by Quantum Generator
prfJ,eCt'Ve mfasuremgnt through Born ‘e {1 E recerel) - rvers)) | dB—— chssin Classica
ruie: pﬂ(x) - |<X|l|"( )>| . : . i} RY(6[1]) _.l - : Data Discriminator
HO N = " L esmamaan, e .
E EE | - . ! Fake E ‘E
:q_2: 1 H 3 RY(B[2]) = : ! " Data - :
|0> T /7( 7 ndimensional L S —— R Sil b s _> e > _ 1
binary strings Uniform N~ s : N :
V(@) R map to 2" bins of Initialization | Measurement Real - |
_ | the discretized | Evaluate Gradients St L S i
0) — ~| 7 dataset. L _Uﬂdfiezara_me_tef ____________ 1\_ _____ _:
QBM Tvbical metrics:
Network of stochastic binary units with a quadratic energy function that ypical metrics. _
follows the Boltzman distribution (Ising Hamiltonian) Dx1.(P||Q) = Zp(i) log@g;)

N|=

H = — E bool — Zwabajag
- ab MMD(P,,P,) = EXT,X%N%, [k(xT,x;.) — 2k(x,,Xg4) + k(xg,x’g)]
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Quantum Circuit Born Machine for Event Generation

Born machine:
Produces statistics according to Born’s measurement rule using
parametrized quantum circuit [y (8)) ]

po(x) = x[p(0))1?, x € {0,1}°"

Muon fixed target scattering experiment

A —A~ s U(0) - o s U@) {—>]  energy
| C ¥ : ‘| C ¥ : Generate discrete PDFs
B —~"— kU0 - H hHUe pt _ (continuous in the limit
I " ' 1 " ' Transversal . . .
! Cln | ; Cln L omentom increasing no. of qubits)
o€ —A Ll u() |- ——— MO > 7
\________,“\ ______ 4 '\________,”\ ______ Pseudorapidit
CORR. VAR. FORM CORR. VAR. FORM o
Parametric Quantum Circuit w| i Kiss O., Grossi M. et all., Conditional
o - N Born machine for Monte Carlo events
— —{a}—o— generation, Phys. Rev. A 106, 022612

— qu
] R (2022)
o -
a Coyle, B., Mills, D. et al, The Born supremacy. In: npj Quantum Inf 6, 60 (2020)
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Quantum Circuit Born Machine for Event Generation

2000° target
. . . | CJ classical
* Generate samples of discrete PDFs with Born machine N simutator
1500 1 noisy simulator
. . . . . L___1 ibmg montreal
* Train using Maximum Mean Discrepancy loss function: 1250
g 1000
O
MMD(PIQ) = IEX~P [K(Xr Y)] + IEX~Q[K(X, Y)] _ ZIEX~P [K(Xr Y)] 7501
Y"‘P Y"’Q Y"’Q \ Gaussian kernel (x_y)2 -
K(xa}’)=eXP(— 20 ) o
0
1.5 1
— efficient way to generate multivariate (and 210
o
conditional) distributions with only linear os{+ "
. e . . 0 10 20 30 40 50
connectivity, suitable for NISQ devices Energy [GeV]
H H Kiss O., Grossi M. et all., Conditional
(SuggeSted by numerlcal eVIdence) Born machine for Monte Carlo events
generation, Phys. Rev. A 106, 022612
(2022)

Coyle, B., Mills, D. et al, The Born supremacy. In: npj Quantum Inf 6, 60 (2020)
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Quantum Kernels for
classification and
anomaly detection
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Analysis setup

Analysis
Discrimination of the signal over the overwhelming background

Features

* For the each jet we have 8 features: (pT,n,$,E,b tag,px,py,pz)

* For MET we have 4 features: (pT,px,py,$)
* For the lepton (electron or muon) we have 7

features: (pT,n,$,E,px,py,pz)
#Hfeatures = 8x7(jets)+7(1lepton)+4(MET) = 67

. 2271 Background : Background M Background
10 1 Signal FOEe s [ Signal 02 x 10° ~ 1 Signal

.01 x 10°

1001 H{ [

.9 x 101 ] RJseiadenssecs

02 04 06 08

Jet 2 Energy



Quantum SVM for Higgs Classification

Input dimensionality reduction through

an Auto-Encoder projects to a lower
dimension latent space (8,16)

Q
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Data encoding circuit serving as feature map for the 8-qubit

QSVM implementation.

@ 1)
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Signal Efficiency (TPR)

| Feature selection + Model | AUC |
AUC + QSVM 0.66 £ 0.01
PyTorch AE + QSVM | 0.62 +0.03
AUC + SVM rbf 0.65 +0.01
PyTorch AE + SVM rbf | 0.62 +0.02
KMeans + SVM rbf 0.61 £0.02

1.0

0.8
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o.%,.___.---'

N(train): 1827808, N(test) 456952
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! —— DNN, AUC = 0.704 = 0.001

[ e DNN(latent), AUC = 0.623 * 0.002
[/ -~ —— BDT, AUC = 0.691 * 0.001
" BDT(latent), AUC = 0.652 + 0.002

0 0.2 0.4 0.6

Background Efficiency (FPR)

0.8

1.0

| Feature selection + Model | AUC |
AUC + QSVM 0.68 + 0.02
AUC + Linear SVM 0.67 £ 0.02
Logistic Regression 0.68 £ 0.02

1o Ntrain=3000, N*t=720 (x5)

0.8
o
o
£
206
v
<
Q2
v
2
w
< 0.4
c
(=)l
—— AUC + VQC(8): AUC = 0.6625 + 0.0149
0.2 — AUC + RF(8): AUC = 0.6622 * 0.0153
—— Hybrid VQC: AUC = 0.6854 + 0.0131
—— Log. Reg.: AUC = 0.6960 + 0.0135
P Random Classifier
0'%.0 0.2 0.4 0.6 0.8

Background Efficiency (FPR)
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Unsupervised learning for Anomaly
Detection

PERFORMANCE EVALUATION
{1) ROC curve
Features > RN —_— &
An, Ad. pr l e & i
?;,:;‘ § >
Hilbwrt space gint R
Clustering algorithms {%) Quastum VS Classicel
QKmeans / QKmedians
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Standard Model jets

« Simulate QCD multi-jets at the
LHC

 Build jet from 100 highest pt
particles

» Apply realistic event selection

Convolutional AutoEncoder
learns the jet internal
structure

R300 5 RY £ =4,816
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C{M IQ ) TECHNOLOGY
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CMS Experiment at LHC, CERN

| Data recorded: Sun Nov 14 19:31:39 2010 CEST
\| Run/Event: 151076 / 1328520

Lumi section: 249

Jet table
Subleading Jet  [AnjAn|An|An|--: |AniAn|AnjAy
P A9[AGAG A+ [AG[AG|AGAG
pr|pr|pr|PT|- - |P|PT|PT|PT

Jet 1, pt: 70.0 GeV

Leading Jet
Pr

Jet 0, pt: 205.1 GeV




Unsu Pe rvised kernel k(wi,7;) = trlp(e:)p(a;)] = |01 (2:)U (2;)|0)
machine p(@:) = U(z:) 0) (0 U ()

Linear entanglement

— G(%,axo,ml) G(IL’(),ZL'l,O) —
* Find the hyperplane that maximizes the B ey l i
distance of the data from the origin of l
the feature vector space gpon | e 2 N —| o
I G() Tn—1 xn) i G(mn—l In O) —

Upper bound on fraction of anomalies in training data at 0.01 (at

. 1 1
most 1% QCD training data are falsely flagged) weF gélu?e R §||w||2 + o Zfi —p

CE/RW IQ) '?ggl:ﬁgroev SUbjGCt to w- @(wz) > p— é’i, é‘z >0, Vi v E (0,1)
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Results

Unsupervised kernel machine

-— L) - L ‘ L L) . ' . Ll Ll " L) - L) ' L Ll L '
k 10° Ancmaly signature e QuaNUM
(N e A A HZ 2 TZZ IS TN
— Brosd G —+ WW 1.5 TeV
\ \ .
10° ]
- Is this an «advantage» we
can use?
10°
10! ;
ALC bnrlum Classical
— 93,54+ 0,05 | 99,342 0.06
— 9470+ 0.11|83.29:0.13
100k —— 47.62+ 052 | 45.80= 0.45 : 1 ; Quantum anomaly detection in the latent space of
bt ek samame e proton collision events at the LHC
0.0 0.2 0.4 0.6 0.8 T}’% Vasileios Belis et al., arXiv:2301.10780.
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In reality....

83.5_ I ] I 1 I 1 I || | .
<
4
3.0+ -
25k - ngher
Unsupervised kernel machine is better
o S AN —
; Ancenaly Signatune — O
oy 10°E . Narrow @ = Wi 35 7oV oo J 2.0 il
(1 e A HZ 2« ZZZ 35TV 5
— Browi G - WW 1.5 TeY.
it \ 2 4 1.5 =)
Classicalis {1 gla\ ol -
: | i |
: better —1 ;
5 | ] | ] L
NEog NEi L=1 L=2 L=3 L=4 L=5 L=6 FE

10!

AUC  Quantum Classical

— 93,54+ 0,05 | 99,342 0.06

— 9470+ 0.11|83.29: 013
100k —— 47.62+ 052 | 45.80= 0.45

F— funpunyueyusiatguegnty < § 3

0.0 0.2 0.4 0.6

>
, ] Increasing entanglement & expressivity
0

Quantum anomaly detection in the latent space
TPR of proton collision events at the LHC
Vasileios Belis et al., arXiv:2301.10780.
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Working with Quantum Kernels

A priori methodology to assess quantum advantage
according to data geometry and kernels structure

* Create classically intractable features

in the Hilbert space to reach Dissecting quantum prediction advantage
advantage. However f
Geometry test
. o . ~
Hilbert space is exponentially larger goq < VN goq o< VNV) (“Gambe
Classical ML predicts similar or Data set exists with potential
better than the quantum ML quantum advantage
Sparser data |
Dimension test for Complexity test for
l quintum seace specific function/label
.. 7 = 2 \ sc x N,
Loss of predictive power i =) (Ee)
\ v
Classical ML Classical ML  Classical ML Likely
. . . can learn can work/fail, can learn & Hard
 How do we find optimal kernel properties ? anyUqny  OK likely fails  prediict well i o

HY Huang et al, (2021), Power of Data in Quantum Machine Learning, Nature Comm
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Ex. Projected Quantum Kernel

Project quantum kernels lower dimensionality

of the representation (i.e. local density matrix)?: Prediction Error - tuned A, y
o - - 0.501 —e— RBF- N:2000
* Improved generalizion while keeping —— FQ - N:2000
features into states classically hard L 045, T P9 N2090 /\\/
o random guessing
o
S 0.40
* Example: ttH(bb) binary classification? G R
©
® 0.35
o e
w \\\\. _____ -——_ -
0.30- B

2 4 6 8 10 12 14 16

3 H'Quantum Class:flers EPJ Web Conf
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Predicting advantage with QUASK

Calculate quantum & classical Analyze results
kernel Gram matrices & plot

Generate data
(classical and quantum datasets)

A

\ 4

»| Preprocess datasets

Can we automatize this pipeline?

Di Marcantonio, F., Incudini, M., Tezza, D., and
Grossi, M. "Quantum Advantage Seeker with
Kernels (QuASK): a software framework to
speed up the research in quantum machine
learning."

Quantum Mach. Intell. 5, 20 (2023).
https://doi.org/10.1007/s42484-023-00107-2
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Quask — Documentation and Tutorial

https://quask.readthedocs.io/en/latest/index.html
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Summary

Research on QML applications in High Energy Physics is producing a large number of prototypes algorithms for

potential future use-cases

* Current focus on algorithms for data processing in a controlled environment for current hardware

* Preliminary hints for advantage in terms of representational power of quantum states

* Mostly, algorithm performance is as good as the classical counterpart

* Need more robust studies to relate architecture of quantum computational model and its performance to
data sets

* Identify use-cases where quantum approach is provably more efficient than classical model

e Studying QML algorithms today links Quantum computing and Learning Theory and draw separation

between classical and quantum learner

QUANTUM : 4 |
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Open questions

* Quantum computing offers great opportunties while HEP provides challenging
problems

« What are the most promising applications?
 How do we define performance and validate results on realistic use cases?

« Experimental data has high dimensionality
« Can we train Quantum Machine Learning algorithms effectively?
« Can we reduce the impact of data reduction techniques?
« Experimental data is shaped by physics laws
« Can we leverage them to build better algorithms?
 CERN is committed to creating impact on QT research in the coming years
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Lectures and Hands-On at CERN

e «A practical Introduction to quantum computing», Elias Combarro
https://indico.cern.ch/event/970903/

« «lntroduction to quantum computing », Heather Grey
https://indico.cern.ch/event/870515/

« A set of two hands-on (introduction) sessions part of the 2023 openlab
summer student lectures series

https://indico.cern.ch/event/1293871/
https://indico.cern.ch/event/1293874/
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https://indico.cern.ch/event/970903/
https://indico.cern.ch/event/870515/
https://indico.cern.ch/event/1293871/
https://indico.cern.ch/event/1293874/

CERN Quantum Technology Initiative

Accelerating Quantum Technology Research and Applications

-

https://quantum.cern/



https://quantum.cern/
https://openlab.cern/quantum

RZZGate

qiskit.circuit.library.RZZGate(theta, label=None, *, duration=None, unit='dt') GitH
Bases: Gate
A parametric 2-qubit Z ® Z interaction (rotation about ZZ).
This gate is symmetric, and is maximally entangling at @ = 7 /2.
Can be appliedtoa QuantumCircuit withthe rzz() method.

Circuit Symbol:

This is a direct sum of RZ rotations, so this gate is equivalent to a uniformly controlled (multiplexed) RZ gate:

a0~ (P50 0,

Examples:
Rzz(6=0)=1
R[[(H = 27?) =T

Rzz0=7)=-2ZQ®Z

IR TR R RN

Qiskit

FidelityQuantumKernel

class FidelityQuantumKernel(*, feature_map=None, fidelity=None, enforce_psd=True,
evaluate_duplicates='off_diagonal') [source]

Bases: BaseKernel
An implementation of the quantum kernel interface based on the Basestateridelity algorithm.

Here, the kernel function is defined as the overlap of two quantum states defined by a parametrized quantum circuit (called
feature map):

K(z,y) = [(¢(z)l6(y))*

Parameters:

« feature_map (QuantumCircuit | None) — Parameterized circuit to be used as the feature map. If none is given, zzreatureMap
is used with two qubits. If there’s a mismatch in the number of qubits of the feature map and the number of features in the
dataset, then the kernel will try to adjust the feature map to reflect the number of features.

« fidelity (BaseStateFidelity | None) — An instance of the BasestateFidelity primitive to be used to compute fidelity between
states. Default is computeuncompute which is created on top of the reference sampler defined by sampler.

« enforce_psd (bool) — Project to the closest positive semidefinite matrix if x = y. Default True.
« evaluate_duplicates (str) —
Defines a strategy how kernel matrix elements are evaluated if duplicate samples are found. Possible values are:

o all means that all kernel matrix elements are evaluated, even the diagonal ones when training. This may introduce
additional noise in the matrix.

o off_diagonal when training the matrix diagonal is set to 1, the rest elements are fully evaluated, e.g., for two
identical samples in the dataset. When inferring, all elements are evaluated. This is the default value.

o none when training the diagonal is set to 1 and if two identical samples are found in the dataset the corresponding
matrix element is set to 1. When inferring, matrix elements for identical samples are set to 1.

a A v ‘Bhy;:




Michael _S'chenk e’E al., Hybrid
Quantum Reinforcement Learning (RL) quiantum reimforcement.

learning at CERN beam

lines. arXiv:2209.11044

Dipole (MSSB.220460)  mw BPM (BSPH.240212) E A@mss =-160.0 prad Formulate as RL prOb/em.'
Defoc.using quadrupole w77 Target (T4) APmssp =-70.0 prad . . .
| e et et BN « Action: (discrete) deflection angle
« State: (continuous) BPM position
7 1 0.15
~ R * Reward: integrated beam intensity
E o E o0 ~—  ontarget
. o «  Optimality: fraction of states for
which the agent takes the right
3 Tz'o p 6'% T e T T LY decision
s (m) s (m)
tune here measure state —

Beam Target Steering Task
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Michael Schenk et al., Hybrid

Quantum Reinforcement Learning (RL) actor.crtic algorithm for

quantum reinforcement

.. . T learning at CERN beam
Task: Beam optimization in linear accelerators lines. arXiv:2209 11044

— Use Reinforcement Learning (sample efficient)

Agent interacts with environment

- Follow policy m(a,|s,) ( Agent }
« Goal: Find policy that maximizes reward \ _
state reward action
St £, ag
Expected reward is estimated by value function Q(s, a) AL . ]
. _ser1 | Environment
« DQN: Deep Q-learning (NN-based) < .

 FERL: Free energy-based RL (clamped Quantum

: Schema of iterative Feedback-loop in RL
Boltzmann Machine)

Structure of the Quantum RL scheme:
« Agentis classical
« Q-function is computed as the energy of a qubit system
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Quantum Reinforcement Learning (RL)

)
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Structure of clamped Quantum Boltzmann Machine (QBM)

—* Weights of QBM can be learned iteratively
(analogous to classical Q-learning)

Transverse Field Ising model

H(v) == Y wigvios, — > wiko7,0%, —TY o2
i€V, jkeH jer
jeEH

Q(s,a) ~ —F (v) = —(HE) — %Z P(c|v) log P(c|v)
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Michael Schenk et al., Hybrid
actor-critic algorithm for
quantum reinforcement
learning at CERN beam
lines. arXiv:2209.11044
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Convergence Study for one-dim. beam target steering task

— Quantum RL converges much
faster than classical Q-learning (8+2
vs. 320140 steps with e. r.)




