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The Second Quantum Revolution and Quantum Computing

John Bell in 1982 at CERN (Image: CERN) 

• Quantum Mechanic principles are 
exploited to develop new technology 

• Create ‘’artificial” quantum states for 
a range of applications (single photons, 
trapped ions, superconductors, etc.) 

Quantum 
Computing

• 1964: Bell inequalities prove that no 
theory based on local hidden variables 
(realism) can reproduce QM results

• Major step confirming the possibility of 
using distant entangled photons as a 
quantum information resource
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Multiple technologies
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See Institute of Quantum Computing, U. of Waterloo,
 https://uwaterloo.ca/institute-for-quantum-computing/quantum-101/quantum-information-science-and-technology/what-qubit

Trapped Ion 
and Atoms

Path 
Qubits

Time 
Qubits

Superconducting 
Qubits

Polarization 
States

Spin Qubit

PHOTONS
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Superconducting Qubits

Ezratty, O. Perspective on 
superconducting qubit 
quantum computing. Eur. 
Phys. J. A 59, 94 (2023). 
https://doi.org/10.1140/epja/s
10050-023-01006-7
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Noisy Intermediate-Scale Quantum devices

• Limitations in terms of stability and connectivity
• Circuit optimisation

• De-coherence, measurement errors or gate level 
errors (noise)

• Specific error mitigation techniques
• Prefer algorithms robust against noise

• Problem size 
• Initially integrated in hybrid quantum-classical 

infrastructure (HPC + QC)
• Quantum Processing Units as new “hardware 

accelerators”
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Superconducting qubits: 
IBM Torino – 133 qubits
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Quantum Computing 
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Do classically intractable computations 
efficiently on a Quantum Computer 
leveraging Quantum Effects 
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MathematicsModeling nature at the quantum level

Quantum chemistry,
Material science and
High energy physics

Algebraic algorithms
with provable speed-ups

- Shor’s Algorithm
- Grover’s Algorithm

Empirical heuristic 
algorithms

- Optimization
- Machine learning

Problems for a quantum computer
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Quantum potential…  and computer science
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Operations (gates) are unitary transformations à reversible computing?

Output is the result of a measurement according to Born rule à stochastic computation ?

No-cloning theorem à information security

Quantum state coherence and isolation à computation stability and errors

Qubit state collapses  à reproducibility?

Quantum Superposition State Quantum Entanglement
(here: Bell state)

Can enable speed-up 
though highly parallel 

computations  

Also, non-classical 
correlations may speed-up 

computations  



Agenda

• Part 1: A brief introduction to Quantum Computing 
• Part 2: Quantum Computing for Machine Learning
• Part 3: Quantum Machine Learning for HEP

15M.Grossi - QTI CERN31.01.24



What is Quantum Machine Learning?
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Fields in Quantum Computing
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Source: Qiskit Textbook
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Fields in Quantum Computing
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CC CQ

QQQC

Type of algorithm

Ty
pe

 o
f d

at
a

Source: Qiskit Textbook

Simulation of Quantum 
Systems using classical ML

Simulation of Quantum 
Systems using a Quantum 
Computer
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Fields in Quantum Computing

20

CC CQ

QQQC

Type of algorithm

Ty
pe

 o
f d

at
a

Here: focus on quantum algorithm 
with classical input data

Source: Qiskit Textbook
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Fields in Quantum Machine Learning (QML) 
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QML

Unsupervised 
Learning

Supervised 
Learning

Reinforcement  
Learning

Source: Qiskit Textbook
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Fields in Quantum Machine Learning (QML) 
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QML

Unsupervised 
Learning

Supervised 
Learning

Reinforcement  
Learning

e.g., Quantum Generative 
Models: aims to learn the 
underlying probability 
distribution 𝜋(𝑦) of a given 
data set and generates 
samples from it using 
quantum network

e.g., Quantum Classifier: aims 
to learn input-output relation
of labeled dataset 𝑓: 𝑥!" ↦
𝑥#$% by optimizing quantum 
network

e.g., Quantum Reinforcement Learning: find 
policy for agent that maximizes reward (expected 

reward computed using QC) 

Source: Qiskit Textbook
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What is Quantum Advantage in QML?

23QML and Optimization – Carla Rieger31.07.23

Multiple considerations:

1. Runtime speed-up 

2. Sample complexity

3. Representational power 

This includes considerations regarding classical intractability: 

Focus on Quantum Circuits that are not efficiently simulable classically

Bloch sphere: only the marked points 
are produced by the Clifford operators 
acting on a computational basis state

Nielsen, Michael A., and Isaac Chuang. "Quantum computation and quantum information." (2002).
Gottesman, Daniel. "The Heisenberg representation of quantum computers." arXiv preprint quant-ph/9807006 (1998).
See also: - Kübler, Jonas, Simon Buchholz, and Bernhard Schölkopf. "The inductive bias of quantum
kernels." Advances in Neural Information Processing Systems 34 (2021): 12661-12673.
- Huang, HY., Broughton, M., Mohseni, M. et al. Power of data in quantum machine learning. Nat Commun 12, 2631 (2021). 
https://doi.org/10.1038/s41467-021-22539-9



Quantum Machine Learning Lyfecycle

Data 
Preparation

Model 
Definition

Model 
Training

Model 
Testing

Model 
Interpretation

Data Reduction
Data Encoding [1,2,3]

[1] Robust data encodings for quantum classifiers, Ryan 
LaRose and Brian Coyle, Phys. Rev. A 102, 032420 
[2] Quantum convolutional neural network for classical data 
classification, https://arxiv.org/pdf/2108.00661.pdf
[3] Quantum Support Vector Machines for Continuum 
Suppression in B Meson Decays, 
https://arxiv.org/abs/2103.12257

The quantum advantage of 
many known QML 

algorithms is impeded by an 
input or output bottleneck 

Read Out

Trainability (BP…)
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Models

Gradient-free or gradient-based optimization
Data Embedding can be learned
Ansatz design can leverage data symmetries1

Variational algorithms (ex. QNN)

Kernel methods (ex. QSVM)

Feature maps as quantum kernels

Classical kernel-based training (convex losses)

Identify classes of kernels that relate to specific data
structures2

Image credit M. Schuld

2 Glick, Jennifer R., et al. "Covariant quantum kernels for data with group structure." arXiv:2105.03406 (2021).

Image credit 
SwissQuantumHub

1 Bogatskiy, Alexander, et al. "Lorentz group equivariant neural network for particle physics." PMLR, 2020.

Representer theorem:

Implicit models achieve better accuracy3

Explicit models exhibit better generalization performance

3Jerbi, Sofiene, et al. "Quantum machine learning beyond kernel methods." arXiv:2110.13162 (2021).

Energy-based ML (ex. QBM)
Build network of stochastic binary units and 
optimise their energy. 
QBM has  quadratic energy function that follows 
the Boltzman distribution (Ising Hamiltonian)
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Supervised Learning in Quantum Computing: 
Quantum Classifiers

26

Goal: learn input-output relation of labeled data

Classical Neural Network Parametrized Quantum Circuit 
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Quantum Circuits and the Born rule
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An arbitrary quantum circuit generating the state |Ψ⟩

Initialization:

initialize qubits in 
computational basis state
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Quantum Circuits and the Born rule
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An arbitrary quantum circuit generating the state |Ψ⟩

Evolve initial state:

Apply set of unitary gates that 
may encode classical input data x
and include parametrized gates
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Quantum Circuits and the Born rule
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An arbitrary quantum circuit generating the state |Ψ⟩

Quantum Measurement

retrieve a classical output 
distribution 𝑥 Ψ !

of classical output states

(with 𝑥 ∈ 0,1 !) according to Born 
rule

31.01.24



Quantum Classifier example: Quantum Tree Tensor Network

30QML and Optimization – Carla Rieger31.07.23

Apply QTTN as binary classifier: 
measure one qubit 

We encode our classical 
input features here

Quantum Tree Tensor Network with generic 
single-qubit unitary gates 𝑈(𝜃, 𝜙, 𝜆)

Variational part
See: Grant, Edward, et al. 
"Hierarchical quantum classifiers." npj
Quantum Information 4.1 (2018): 65.



Compromise between exponential compression 
and circuit depth
Ex:  Amplitude Encoding

Quantum embedding for 
classical data

31.01.24 31

𝝓(𝒙) =
𝟏
𝒙
+
𝒊#𝟎

𝑵

𝒙𝒊|𝒊⟩

Exponential compression
nqubit ∝ O(log(N)) 

Polynomial number of gates
ngate ∝ O(poly(N))

Gianelle, A., Koppenburg, P., 
Lucchesi, D. et al. Quantum 
Machine Learning for b-jet charge 
identification. J. High Energ. Phys.
2022, 14 (2022). 
https://doi.org/10.1007/JHEP08(20
22)014

S.Y. Chang, poster at ”Quantum Tensor Network in Machine Learning, NeurIPS 2021 

Effect of different 
encoding in 
quantum CNN 



Parameter optimization

36

Source:https://pennylane.ai/qml/demos/tutorial_stochastic_parameter_shift/

The parameter-shift rule (gradient-based)

Compute partial derivative of variational circuit parameter 𝜃, alternative to 
analytical gradient computation and classical finite difference rule (numerical 
errors and resource cost considerations)

Evaluate Quantum Circuit twice at shifted 
parameters to compute gradient 
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Parameter optimization

37

https://pennylane.ai/qml/demos/
tutorial_spsa

Simultaneous Perturbation Stochastic Approximation (SPSA)
(gradient-free)

If gradient computation not possible, too resource-intensive, 
or noise-robustness required (slower convergence but fewer function evaluations) 

Gradient is approximated by two sampling steps and parameters are perturbed in all 
directions simultaneously 

Iterative update rule 
comparable to classical 
stochastic gradient descent 
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Challenges when using Parametrized Quantum Circuits

38

• Efficient data handling and data embedding

• Find balance: Generalization and representational power vs. Convergence

• Problem of barren plateaus and vanishing gradients in optimization landscape 

• How well can we survey the Hilbert space (expressibility)?

• Current hardware limitations 

• Limited number of qubits and connectivity 

• Quantum Noise Effects (decoherence, measurement errors or gate-level errors)

• Efficient interplay between classical and quantum computer

• ….
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Equivariant Quantum CNN 

§ Construct equivariant quantum CNN 
under rotational & reflectional 
symmetry 

§ Improved generalization power

Extended MNIST 
Image classification: 

(digits 4,5) 

31.01.24

Su Yeon Chang, IEEE QCE23

ℋ = −𝐽*
⟨#$⟩

𝜎#𝜎$

Ising spins phase 
classification :

39



Loss landscape plotted with orqviz

Non-convexity of loss landscape
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Non-equivariant QCNN ApprEquivQCNN



§ Polynomial scaling in training the model 𝒪(𝑛&)
(where 𝑛 is the number of training data) à improve 
scalability

§ Crucial to select the right kernel, but we have a 
limited set of well studied kernels à help in finding 
useful kernel functions.

Linear kernel Radial kernel

42

Classification problem: find the hyperplane that better divides data classes, 

defining the prediction as an inner product and trying to maximize the margins.

Support Vector Machine

G.James, D.Witten, T.Hastie, R.Tibshirani: An introduction to statistical learning
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Quantum Kernel Estimator

43

Use quantum computer to:

• encode the data; 

• estimate the kernel as the fidelity between 
pairs of feature vectors;

• plug         into the Dual              and get 𝛼'
• Classical computer are then used to do the 

SVM according to:

𝑲𝒊,𝒋 𝐿)(𝛼)

𝑙𝑎𝑏𝑒𝑙 𝑠 = 𝑠𝑖𝑔𝑛(:
!∈+

𝛼!𝑦!𝑲 𝑥! , 𝑠 + 𝑏 )

x z

V.Havlicek et al, Nature 567, 209 (2019) 
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Quantum SVM 

QSVM replaces the kernel of classical SVM with a quantum kernel (inner product of quantum state)

SVM Execution Flow 



Software
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Agenda
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• Part 1:intro QC 
• Part 2: QC for Quantum Machine Learning
• Part 3: QML for HEP
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How does CERN engage in Quantum Technologies?
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QT4HEP HEP4QT
Can CERN stay 
out of quantum 
technologies?

How can CERN 
contribute to 
quantum 
technologies?

• Develop technologies, 
capabilities required by 
CERN scientific
programmes

• Allow CERN to 
interoperate with future 
quantum infrastructures

• Extend and share
technologies uniquely
available at CERN

• Boost development and 
adoption of QT beyond
CERN

• Use CERN reputation to
maximise impact



The CERN Quantum Technology Initiative
Understanding the impact of quantum technologies in HEP

QTI Roadmap: https://doi.org/10.5281/zenodo.5553774

HYBRID QUANTUM 
COMPUTING AND 
ALGORITHMS

QUANTUM 
NETWORKS AND 
COMMUNICATIONS

COLLABORATION 
FOR IMPACT

CERN QUANTUM 
TECHNOLOGY
PLATFORMS

launched in 2020
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Quantum Generative Models

QCBM
Sample variational pure state | ⟩ψ(θ) by 
projective measurement through Born 
rule: 𝐩𝛉 𝐱 = |B𝐱|𝛙(𝛉 ⟩) |𝟐 .

QGAN

Multiple implementations, mostly classical-quantum hybrid
Quantum Generator

Measurement Real
Data

Fake
Data

Classical 
Discriminator

Classical 
Data

Evaluate Gradients &
Update Parameters 

Uniform 
Initialization

QBM 
Network of stochastic binary units with a quadratic energy function that 
follows the Boltzman distribution (Ising Hamiltonian)

Delgado and Hamilton, arXiv:2203.03578 (2022)
Zoufal, et al., npj Quantum Inf 5, 103 (2019)
Leadbeater et al., Entropy 2021, 23, 1281.
Amin, et al. Physical Review X 8.2 (2018): 021050.

n dimensional 
binary strings
map to 2n bins of 
the discretized 
dataset.

Typical metrics:
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Quantum Circuit Born Machine for Event Generation

5031.01.24

Born machine:
Produces statistics according to Born’s measurement rule using 
parametrized quantum circuit |𝜓 𝜃 ⟩

𝑝F 𝑥 = 𝑥 𝜓 𝜃 G, 𝑥 ∈ 0,1 HI

Parametric Quantum Circuit 

Generate discrete PDFs 
(continuous in the limit 
increasing no. of qubits)

Coyle, B., Mills, D. et al, The Born supremacy. In: npj Quantum Inf 6, 60 (2020)

Transversal 
momentum

Pseudorapidity

Kiss O., Grossi M. et all., Conditional 
Born machine for Monte Carlo events 
generation, Phys. Rev. A 106, 022612 
(2022)

Muon fixed target scattering experiment 



Quantum Circuit Born Machine for Event Generation

5131.01.24

• Generate samples of discrete PDFs with Born machine

• Train using Maximum Mean Discrepancy loss function:

MMD(P,Q) = 𝔼(~*
+~*

K X, Y + 𝔼(~,
+~,

K X, Y − 2𝔼(~*
+~,

K X, Y

Coyle, B., Mills, D. et al, The Born supremacy. In: npj Quantum Inf 6, 60 (2020)

Kiss O., Grossi M. et all., Conditional 
Born machine for Monte Carlo events 
generation, Phys. Rev. A 106, 022612 
(2022)

Gaussian kernel

efficient way to generate multivariate (and 
conditional) distributions with only linear 
connectivity, suitable for NISQ devices
(suggested by numerical evidence)
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Quantum Kernels for 
classification and 
anomaly detection
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Analysis
Discrimination of the signal over the overwhelming background 

Features

• For the each jet we have 8 features: (pT,η,ϕ,E,b tag,px,py,pz)

• For MET we have 4 features: (pT,px,py,ϕ)

• For the lepton (electron or muon) we have 7 

features: (pT,η,ϕ,E,px,py,pz)
#features = 8×7(jets)+7(1lepton)+4(MET) = 67

Analysis setup
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Input dimensionality reduction through 
an Auto-Encoder projects to a lower 
dimension latent space (8,16)

Data encoding circuit serving as feature map for the 8-qubit 
QSVM implementation. 

Quantum SVM for Higgs Classification 



Unsupervised learning for Anomaly 
Detection



• Simulate QCD multi-jets at the 
LHC

• Build jet from 100 highest pt
particles

• Apply realistic event selection

Standard Model jets

Convolutional AutoEncoder 
learns the  jet internal 
structure
ℝHJJ → ℝℓ , ℓ = 4, 8,16

Jet table



• Find the hyperplane that maximizes the 
distance of the data from the origin of 
the feature vector space

Unsupervised kernel 
machine

Upper bound on fraction of anomalies in training data at 0.01 (at 
most 1% QCD training data are falsely flagged) 



Quantum anomaly detection in the latent space of 
proton collision events at the LHC
Vasileios Belis et al., arXiv:2301.10780.

Results

Is this an «advantage» we 
can use?



Quantum anomaly detection in the latent space 
of proton collision events at the LHC
Vasileios Belis et al., arXiv:2301.10780.

In reality….

Higher 
is better

Increasing entanglement & expressivity

Classical is 
better
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HY Huang  et al, (2021), Power of Data in Quantum Machine Learning, Nature Comm

A priori methodology to assess quantum advantage 
according to data geometry and kernels structure 

Hilbert space is exponentially larger 

Sparser data

Loss of predictive power

• Create classically intractable features 
in the Hilbert space to reach 
advantage. However

Working with Quantum Kernels

• How do we find optimal kernel properties ?



Project quantum kernels lower dimensionality 
of the representation (i.e. local density matrix)1:

• Improved generalizion while keeping 
features into states  classically hard

• Example: ttH(bb) binary classification2

Ex.  Projected Quantum Kernel

1Huang, Hsin-Yuan, et al. "Power of data in quantum machine learning." Nature communications 12.1 (2021): 2631. 
2 V Belis et al, (2021), Higgs Analysis with Quantum Classifiers, EPJ Web Conf
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Can we automatize this pipeline? 
Di Marcantonio, F., Incudini, M., Tezza, D., and 
Grossi, M. "Quantum Advantage Seeker with 
Kernels (QuASK): a software framework to 
speed up the research in quantum machine 
learning."
Quantum Mach. Intell. 5, 20 (2023). 
https://doi.org/10.1007/s42484-023-00107-2

Predicting advantage with QUASK



Quask – Documentation and Tutorial
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https://quask.readthedocs.io/en/latest/index.html



Summary
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Research on QML applications in High Energy Physics is producing a large number of prototypes algorithms for 

potential future use-cases

• Current focus on algorithms for data processing in a controlled environment for current hardware

• Preliminary hints for advantage in terms of representational power of quantum states

• Mostly, algorithm performance is as good as the classical counterpart

• Need more robust studies to relate architecture of quantum computational model and its performance to 

data sets

• Identify use-cases where quantum approach is provably more efficient than classical model 

• Studying QML algorithms today links Quantum computing and Learning Theory and draw separation 

between classical and quantum learner
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Open questions
• Quantum computing offers great opportunties while HEP provides challenging 

problems
• What are the most promising applications?
• How do we define performance and validate results on realistic use cases?

• Experimental data has high dimensionality
• Can we train Quantum Machine Learning algorithms  effectively?
• Can we reduce the impact of data reduction techniques?

• Experimental data is shaped by physics laws
• Can we leverage them to build better algorithms? 

• CERN is committed to creating impact on QT research in the coming years



Lectures and Hands-On at CERN

• «A practical Introduction to quantum computing», Elias Combarro
https://indico.cern.ch/event/970903/
• «Introduction to quantum computing », Heather Grey
https://indico.cern.ch/event/870515/
• A set of two hands-on (introduction) sessions part of the 2023 openlab 

summer student lectures series 
https://indico.cern.ch/event/1293871/
https://indico.cern.ch/event/1293874/
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Thanks!

68https://quantum.cern/

https://openlab.cern/quantum

https://quantum.cern/
https://openlab.cern/quantum


Qiskit
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Quantum Reinforcement Learning (RL)

Beam Target Steering Task

• Action: (discrete) deflection angle 
• State: (continuous) BPM position 
• Reward: integrated beam intensity 

on target
• Optimality: fraction of states for

which the agent takes the right 
decision

Formulate as RL problem:

Michael Schenk et al., Hybrid 
actor-critic algorithm for 
quantum reinforcement 
learning at CERN beam 
lines. arXiv:2209.11044

tune here measure state 



Quantum Reinforcement Learning (RL)
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Michael Schenk et al., Hybrid 
actor-critic algorithm for 
quantum reinforcement 
learning at CERN beam 
lines. arXiv:2209.11044Task: Beam optimization in linear accelerators

Use Reinforcement Learning (sample efficient) 

Agent interacts with environment
• Follow policy 𝝅(𝒂𝒕|𝒔𝒕)
• Goal: Find policy that maximizes reward

Expected reward is estimated by value function 𝑸(𝒔, 𝒂)
• DQN: Deep Q-learning (NN-based)
• FERL: Free energy-based RL (clamped Quantum 

Boltzmann Machine)
Schema of iterative Feedback-loop in RL

Structure of the Quantum RL scheme:
• Agent is classical
• 𝑄-function is computed as the energy of a qubit system
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Quantum Reinforcement Learning (RL)

Structure of clamped Quantum Boltzmann Machine (QBM)

Michael Schenk et al., Hybrid 
actor-critic algorithm for 
quantum reinforcement 
learning at CERN beam 
lines. arXiv:2209.11044

Weights of QBM can be learned iteratively 
(analogous to classical Q-learning)

Transverse Field Ising model Convergence Study for one-dim. beam target steering task

Quantum RL converges much 
faster than classical Q-learning (8±2 
vs. 320±40 steps with e. r.)

Quantum 
Annealing


