

CONFERENCE ON HIGH ENERGY PHYSICS 11-14 SEPTEMBER 2023, YEREVAN, ARMENIA

Physics beyond the Standard Model with the CMS Experiment at the LHC

Sergei Shmatov (JINR, Dubna) on behalf of the CMS Collaboration

shmatov@cern.ch shmatov@jinr.ru

CMS Overview

https://cms.cern/ https://cms-info.web.cern.ch/

(324 women 905 men) (152 women 966 men) (414 women 1041 men)

(405 women 1767 men)

AANL, Yerevan, Armenia, 12 September, 2023

- Standard Model after over 10 Years of LHC Operations
- Why we are still expecting the New Physics?
- Conventional Signals ("standard candles")
- Higgs Boson as a Tool to Search for the New Physics
- LLP Non-conventional Signals
- Summary

Some Statistics from CMS

This talk are summarized the selected (by me) the recent CMS results on Physics beyond the SM (Exotica/B2G/Higgs WG)

LHCP2023, 22-27 May, Belgrad, EPS-HEP2023, 21-25 Aug 2023, Hamburg <u>Recent CMS Briefings</u>

CMS Publications Page

https://cms-results.web.cern.ch/cms-results/publicresults/publications/

CMS Public Results (newest) https://cms-results-search.web.cern.ch/

35% of Standard Model (SMP/FSQ/BPH/TOP) 14% of Higgs Physics 36% of BSM Physics (EXO/B2G/SUSY) 11% of Heavy Ion

http://cern.ch/cms-results/publicresults/publications-vs-time/

- Exotica/SUSY/B2G 435
- Higgs 175
- Standard Model/Top/B and Quarkonia 383
- Forward and Soft QCD 49
- Heavy Ion 129
- Detector Performance 42

CHEP-Yerevan-2023 talks with the CMS Results

17 more talks with the CMS Results

Beyond the Standard Model

- Alexander Lanyov, Physics of Dimuons at the LHC
- Maria Savina, Dark Matter Search at the LHC
- Artur Apresyan, Searches for LLPs at CMS, and LLP-optimized detectors for future colliders

Precise Tests of the Standard Model

- Armen Tumasyan, Study of the Higgs boson decay to bottom quark pairs with CMS
- Aliaksei Raspiareza, Study of the CP structure of the Yukawa coupling between the Higgs boson and taus
- Seddigheh Tizchang, Rare Single Top-Quark production at CMS
- Vlad Shalaev, Polarization Effects in Processes of Dimuon Production
- Ilya Zhizhin, Photon induced background for DiMuon studies
- Vladimir Zykunov, Radiative corrections to dilepton production at LHC..
- Maxim Perfilov, Separation between top pair and single top contributions with tWb final state using NN
- Gholamhossein Haghighat, Latest FCNC results from the CMS experiment

QCD and Heavy lons

- Olga Kodolova, QCD Physics with CMS
- Sergei Shulha, Methodology of measurement of quark and gluon jet macro parameters at hadron collider
- Sergey Petrushanko, Recent heavy-ion results by CMS experiment

Detector Performance, Upgrade and Future Physics

- Vladimir Karjavine, JINR participation in the CMS upgrade for the High Luminosity LHC
- Vadim Alexakhin, CMS HGCAL cosmic test stand
- Milos Dordevic, Physics at HL-LHC and beyond

LHC Timeline and Data That We Have

1 NON

2023: <µ> = 52

2022: <u> = 46

2018: <µ> = 37

2017: <u> = 38

2016: <u> = 27 2015: <µ> = 14

1 Dec

CMS Luminosity Information

Sergei Shmatov, The Conferene on High Energy Physics, Yerevan

100

What do we know today about the Standard Model from LHC?

During Run 2 the LHC produced 10¹⁶ collisions

Large samples of various particles produced:

- W bosons: 12 billion
- Z bosons: 2.8 billion
- Top quarks: 300 million
- B quarks: 40 trillion
- Higgs bosons: 7.7 million

Summary of Standard Model Tests with EWK Bosons

Summaries of CMS cross section measurements https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsCombined

plots are updated for Summer 2023 Conferences

Overview of CMS cross section results

Summary of HLO Strinjent Tests

Summary of the cross sections standard model particles produced in association with jets https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsCombined

Higgs Portrait after 10 Years

During Run 2 of the LHC the experimental collaborations started to employ the combined data for precision measurements of Higgs properties (mass, width, couplings, CP, rare decays)

- All main production mechanisms are observed, including $h \rightarrow bbar$, ttH, VH
- Mass of Higgs boson m_h is measured with an accuracy of 0.1% (!)

- Precisions of cross section and branching ratio measurements in combined channel are down to 8.5% level
- We have ~6-30% accuracy for measurements of couplings
- The absolute value of a width $\Gamma_{\rm H} = 3.2^{+2.4}_{-1.7}$ MeV is getting closer to the SM expectations (4.1 MeV). We summed to improve an accuracy.
- Spin, parity, differential distributions do not contradict the SM

see talks by A. Tumasyan and A. Raspiareza

What do we have as a result?

THE STANDARD MODEL : IT HAS TO BREAK DOWN AT SOME POINT BUT JUST KEEPS CHUGGING ALONG!

MCK, COSPAZOH

Why we are still expecting the New Physics?

A room in Higgs Sector

... but the current accuracy of Higgs coupling measurements is still insufficient to reject BSM Higgs hypothesis EPJC 79 (2019) 421

Another Hint from the Higgs: Flavour Universality

The properties of the Higgs h₁₂₅ agree fully with SM in decay into

- gauge bosons
- 3rd generation fermions (t/b/T)
- and do not conflict with results for the 2nd generation (no deviations in cc/µµ decays after RUN2)

We do not know and will not know until the end of the LHC whether the coupling of the Higgs h_{125} to 1st generation fermions is in a "standard" way or not.

If we have no Extra Higgses! (rare decays are enhanced within Extended Higgs Sectors)

Lepton universality in beauty-quark decays

14

$$R_{X} \equiv \frac{\mathcal{B} \left(B \to X \,\mu\mu\right)}{\mathcal{B} \left(B \to X \,J/\psi \left(\to \mu\mu\right)\right)} \frac{\mathcal{B} \left(B \to X \,J/\psi \left(\to ee\right)\right)}{\mathcal{B} \left(B \to X \,ee\right)} = 1_{(SM)}$$

$$12.09.2023 \qquad 14$$

W boson mass with the CDF II detector

 $W
ightarrow \mu
u$ and W
ightarrow e
u decays.

 $M_W = 80,433.5 \pm 6.4_{
m stat} \pm 6.9_{
m syst} = 80,433.5 \pm 9.4~{
m MeV}/c^2$

Fermilab Muon g – 2 Experiment

g-2 = 0.00233184110 +/- 0.00000000043 (stat.) +/-0.0000000019 (syst.), 0.2 ppm

 $a_{\mu}^{Exp} - a_{\mu}^{Th} = (251 \pm 59) \times 10^{-11} (4.2\sigma)$

SUSY

Analyses in the LHC Collaborations

Dark Matter Sectors

- Direct Searches for the Physics Beyond the SM Direct EFT production Conventional Signals, such as new resonances in dileptons/diphotons/ dijets spectra or non-resonant signals, combinations of physics objects SM (leptons/photons/jets) and MET/ b/t-jets tags, high-multiplicity events, etc **Extra Dimensions** E < ELHC E > EIHC LQ/CI/Excited Fermions/B3G **Extended Gauge Sector** on-conventional Signals, for example displaced vertices/leptons/lepton-jets/dileptons from Long-Lived Particles or emerging jets/leptons from boosted heavy objects, $m \ll p_T$ (i.e. high-p_T Z/W/h₁₂₅ bosons) Long-Lived Particles (Dark Matter/Non-standard SUSY/Neutrino Masses/etc) Extended Higgs and
- **BSM-Higgs Physics**
 - ✓ Searches for the new Higgs states (from extended Higgs sector including SUSY)
 - Probes for the New Physics with h_{125} (Higgs as a tool for new discovery) \checkmark

Extra Higgses, Dark Matter, Flavour Universality Violation

- Check for discrepancies with data and search for new physics via Effective Field Theory $L = L_{SM}^{(4)} + \sum_{i} \frac{c_{i}^{(5)}}{\Lambda_{i}} O_{i}^{(5)} + \sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$
- Precision Tests of SM
 - Measurements of the W/Z, Drell-Yan (+ n jets) x-sections and angular characteristics \checkmark
 - Search for rare decays of B-mesons \checkmark
 - Observations of other rare process in top sector within SM (Wtb couplings, CP violating top quark \checkmark couplings, flavor-changing neutral current interactions of the t-quark and h_{125})

Conventional Signals

- Heavy Resonances (extended gauge models, extra dimensions, technicolor) ⇒ dileptons, dijets, diphotons, ttbar, WZ
- Non-Resonant Signals
- Mono-particle + Missing ET (extended gauge models, extra dimensions, technicolor, SUSY) ⇒ mono-jet + MET, mono-photon + MET, mono-lepton + MET
- Microscopic Black Holes (extra dimensions) ⇒ highmultiplicity events

- Leptoquarks \Rightarrow lepton + jet
- 4th Generation ⇒ leptons/jets, dilepton

Direct Search for BSM: Conventional Signals

plots are updated for Summer 2023 Conferences

https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryPlotsEXO13TeV

Example of Dark Matter Searches in Dijets+Dileptons

ga

V/VA

 $Z'_{V/A}$

ga

We consider a model that assumes the existence of a single DM particle that interacts with the SM particles through a spin-1 mediator, which can be either a vector or axial-vector boson.

- vector mediator with small couplings to leptons, g_{DM} = 1.0, g_q = 0.1, g_I = 0.01
- axial-vector mediator with equal couplings to quark and leptons: g_{DM} = 1.0, g_q = g_l = 0.1

Vector-like quarks

138 fb⁻¹ (13 TeV)

1.5

1.4

.2

Events / 40 GeV

CMS

VLQ B

B(tW)

Preliminary

all channels

95% CL observed

0.7 0.8 0.9

Search for a pair of bottom-type vector-like quarks

- $VLQ \rightarrow b + H/Z, t + W$
- both fully hadronic final states and those containing a lepton pair from a Z boson decay
- hadronic decays can be resolved as two distinct jets or merged into a single jet

- 1570 GeV for 100% B \rightarrow bH
- 1540 GeV for 100% B \rightarrow bZ

For many cases, they exceed by 100 GeV or more those of previous results.

CMS-PAS-B2G-20-014

For m_{τ} from 600 to 1200 GeV, the upper limits on the production cross section range from 1260 to 68 fb.

22

12.09.2023

Some Selected Recent Excitements from LHC

2.5 m_{uu} [GeV]

RUN3 is a perfect judge for these challenges!

Sergei Shmatov, The Conferene on High Energy Physics, Yerevan

2.5 m... [GeV]

CMS-PAS-EXO-21-005

extended sector

Higgs Invisible Decays

The expected in SM h_{125} the branching fraction $h_{125} \rightarrow \text{inv}$ $\mathcal{B}(h_{125} \rightarrow ZZ^* \rightarrow 4\nu) = 0.12\%$

Several BSM scenario anomalous and sizeable values, $\mathcal B$ is significantly enhanced

■ a simple extension of the SM to provide a Dark Matter (DM) candidate and are able to predict the observed relic DM density vis s-channel $\chi \chi \rightarrow f \bar{f}$ CMS-HIG-21-007 arXiv:2303.01214

Sergei Shmatov, The Conferene on High Energy Physics, Yerevan

12.09.2023

Lepton Flavour Violation Higgs Decays (1)

Lepton Flavour Violation Higgs Decays (2)

LFV $H \rightarrow e\tau$

Observed

CMS

The first direct search for LFV $H \rightarrow \mu \tau / e \tau$ decays for an Extra Higgs mass in the range $200 \ GeV < m_H < 900 \ GeV$ (neutral heavy Higgs boson) 35.9 fb⁻¹ (13 TeV)

type 2, ggH, T lepton decay products are highly boosted

Searches for Low-Mass BSM Higgses/DM in h₁₂₅ Decays

If $m_H > 2m_X$, some BSM scenarios allow Higgs bosons decays via one or two hypothetical on-shell new (pseudo)scalar(s) decaying to a pair of SM particles.

Sergei Shmatov, The Conferene on High Energy Physics, Yerevan

12.09.2023

BSM Higgs/V' in Decays into h₁₂₅(+X)

If $m_H < 2m_X$, the finals states are possible with h_{125} and SM gauge bosons

events / GeV

BSM Higgs/X in Decays into BSM Particles

30

12.09.2023

m_A (GeV)

BSM Higgs/X in Decays into SM Particles

Direct Search for BSM: LLP Non-conventional Signals

LLPs may have decay lengths up to several meters, hence traveling through the inner detector layers without leaving any trace

see talks by A. Apresyan

- a proper lifetime $c\tau_0$ is greater than or comparable to the characteristic size of the (sub)detectors
- small cτ₀ that comparable to the inner tracker size, no displaced tracks → "standard" prompt decay
- intermediate $c\tau_0 \rightarrow LLP$
- very large/infinite large cτ₀ → stable particles, "standard" MET signatures

Inelastic Dark Matter at the LHC/LLP

- inelastic dark matter: relic particles that cannot scatter elastically off of nuclei the dark sector
- particles continue traveling for a long time and traverse several meters (Long-Lived Particles) before tunneling back into our visible universe (quarks or leptons)

SUSY RPV

SUSY RPC

Higgs+Other

Overview of CMS Exotica LLP Searches

plots are updated for Summer 2023 Conferences

Overview of CMS long-lived particle searches

http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO/LLP.html

LLP with Displaced Dimuons

No significant excess of events above the standard model background is observed. The results are interpreted in the frameworks of the hidden Abelian Higgs model, in which the Higgs boson decays to a pair of longlived dark photons; and of an R- parity violating supersymmetry model

LLP with Displaced Jets (Showers in Muon System)

Summary

Extensive searches for the New Physics are performed with CMS experiment on RUN1 and RUN2 data

- 219 of EXO analyses, 175 of Higgs analyses, 79 of B2G, 137 of SUSY
- The tricks of the RUN2/3 are (procedure was updated during LS2 and will be improved further)
 - higgs boson is intensively involved in searches
 - non-conventional signals (displaced vertices, highly-boosted objects produced emerging jets/leptons)
- Many new analyses made public
 - for Summer Conferences, <u>http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/CMS/index.html</u>
 - Physics Briefings at: <u>https://cms.cern/tags/physics-briefing</u>

The first RUN3 results are already available

THANK YOU FOR YOUR ATTENTION!

What does Brazilian Flag mean?

Model-independent limits on cross section (in narrow width approximation, NWA)

Channel	Z' _{SSM} Obs. [TeV] Exp. [TeV]		Z'_{ψ} Obs. [TeV] Exp. [TeV]		Channel	$k/\overline{M}_{\rm Pl}$ Obs. [TeV]	= 0.01 Exp. [TeV]	$k/\overline{M}_{\rm Pl}$ Obs. [TeV]	= 0.05 Exp. [TeV]	$k/\overline{M}_{\rm Pl}$ Obs. [TeV]	= 0.1 Exp. [TeV]
e e	4.72	4.72	4.11	4.13	e e	2.16	2.29	3.70	3.83	4.42	4.43
$\mu^+\mu^-$	4.89	4.90	4.29	4.30	$\mu^+\mu^-$	2.34	2.32	3.96	3.96	4.59	4.59
$e e + \mu^+ \mu^+$	5.15	5.14	4.56	4.55	$e e + \mu^+\mu^-$	2.47	2.53	4.16	4.19	4.78	4.81

b

b

Production of SM Higgs boson

£2.09.2023

Higgs Width

10

 10^{-2}

10-3

10-4

ATLAS Simulation

dơ/dm₄l [fb/GeV]

1000

41

is = 8 TeV

 $qq \rightarrow ZZ \rightarrow 2e2\mu$

 $aa \rightarrow H^* \rightarrow ZZ (S)$

- total Higgs width of 4.1 MeV unmeasurably small, limited by detector resolution
- in assumption the lack of signal-background interference
- Γ_H < 1.1 GeV @ 95% CL in 4I

Off-shell measurements in ZZ for gg-production

Summary of 2HDM+S searches at 13 TeV

https://twiki.cern.ch/twiki/bin/view/CMSPublic/Summary2HDMSRun2

Displaced Leptons + Jets

RPV SUSY, GMSB, and BSM Scalar Higgs

- Leptons could have common or different vertexes
 - $\mu\mu$, ee and e μ final states were used
- Trigger and event selection exclusively on displaced leptons
- leptons |d0| is the main discriminating variable (up to 10 cm)

113-118 fb⁻¹ (13 TeV)

Median expected

Observed

co-NLSP

D NLSP

– ē NLSP

TNLSP

10³ 드

10²

10

10-1

10-2

10-3

10-4

m₂ [GeV]

Data driven background estimation

EPJC 82 (2022) 153

BSM Scalar Higgs

Sergei Shmatov, The Conferene on High Energy Physics, Yerevan

12.09.2023

LHC Satellite Experiments

Sergei Shmatov, The Conferene on High Energy Physics, Yerevan

~100m

≤100m

10⁻⁹

0.100

1000

cτ (m)

10

10⁵

10

LLP Lifetime

MAssive Timing Hodoscope for Ultra-Stable neutraLpArticles

The full-scale detector could then become operational by 2025-26.

https://arxiv.org/abs/1901.04040

