

Search for CP Violation in H→ττ Decays at CMS Alexei Raspereza on behalf of the CMS Collaboration

CHEP-Yerevan, 11/09/2023

Introduction

- Origin of Baryon (matter-antimatter) Asymmetry in the Universe (BAU) remains one of the main riddles in contemporary cosmology
 - asymmetry of 10⁻¹⁰-10⁻⁹ is required at the stage of baryogenesis to explain the observed dominance of matter over antimatter in nowadays Universe
- Sakharov conditions to generate BAU
 - baryon number violation
 - interactions out of thermal equilibrium
 - C and CP violation
- Single complex phase in CKM matrix : source of CP violation in the SM
 - observed in decays of *kaons, D* and *B mesons*
 - insufficient to explain the observed BAU
- Are there other sources of CP violation?
 - with the discovery of the Higgs boson, the scalar sector of theory has become new domain to search for **CP violation**

Higgs CP properties investigated at the LHC

- CP properties of the HVV couplings extensively studied by CMS and ATLAS in production (VBF, VH) and decays (H→ZZ) → stringent upper limits are set on
 - CP-odd terms of HVV couplings

- ttH production and H→TT decays: excellent probes of the CP structure of Yukawa couplings
 - → CP-odd term can contribute to coupling at tree level
 - → measurements of ttH production at LHC disfavor pure CP-odd Htt coupling

 This talk : measurements of the Higgs boson CP properties in H→TT decays by CMS (JHEP 06 (2022) 012)

CP observable in H→TT decays

• Yukawa coupling (general case):

$$\mathcal{L}_Y = \frac{m_\tau}{v} \Big(\kappa_\tau \bar{\tau} \tau + \tilde{\kappa}_\tau \bar{\tau} i \gamma_5 \tau \Big) H$$

- CP-mixing angle : $\tan(\alpha^{\mathrm{H}\tau\tau}) = \frac{\kappa_{\tau}}{\kappa_{\tau}}$
- CP observable : angle between tau decay planes in the Higgs boson rest frame, ϕ_{CP}

- decay plane : plane spanned by
 - tau momentum, $ec{p_{ au}}$
 - polarimetric vector \vec{h}_{τ} : most probable orientation of τ spin (defined by kinematics of τ decay products)

Information on CP mixing angle is encoded in the distribution of ϕ_{CP}

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}\phi_{CP}} \sim 1 - \frac{\pi^2}{16} b(x^+) b(x^-) \cos\left(\phi_{CP} - 2\alpha^{\mathrm{H}\tau\tau}\right)$$

 $b(x^{\pm})$ - spectral functions, encapsulating dependence of the tau polarization on the momentum fraction (x^{\pm}) carried by the charged lepton or mesonic resonance

Reconstruction of T decay planes

 exact reconstruction of tau decay planes in the Higgs rest frame (RF) is not feasible due to undetected neutrinos → use approximations

 $\tau^{\pm} \to \pi^{\pm} \nu, \ell^{\pm} \nu \nu$: spanned by impact parameter vector λ^{\pm} and momentum of $\pi^{\pm}(\ell^{\pm})$ $\tau^{\pm} \to \rho^{\pm}(\pi^{\pm}\pi^{0})\nu, a_{1}^{\pm}(\pi^{\pm}\pi^{0}\pi^{0})\nu$: spanned by momenta of charged pion and neutral pion system

• decay planes are reconstructed in the RF of $\pi^+\pi^-(\pi^\pm\ell^\mp)$

Impact parameter (IP) method

• IP method is applied in case of the following decays:

$$\tau^{+}\tau^{-} \to (\pi^{+}\nu)(\pi^{-}\nu),$$

$$\tau^{\pm}\tau^{\mp} \to (\pi^{\pm}\nu)(\ell^{\mp}\nu\nu)$$

- Impact parameter vectors are boosted in RF of $\pi^+\pi^-(\pi^\pm\ell^\mp)$ $\vec{P}^+ + \vec{P}^- = 0$
- acoplanarity angle $\phi^* = \arccos \left(\vec{\lambda}_{\perp}^+ \cdot \vec{\lambda}_{\perp}^- \right)$
- introduce observable $\mathcal{O}^* = \vec{P}^- \cdot (\vec{\lambda}_{\perp}^+ \times \vec{\lambda}_{\perp}^-)$
- ϕ_{CP} is defined in the range [0,2 π] $\mathcal{O}^* > 0$: $\phi_{CP} = \phi$ $\mathcal{O}^* < 0$: $\phi_{CP} = 2\pi - \phi^*$

Neutral-Pion (NP) method

 NP method targets primarily case when both T leptons decay via

- 4-vectors of charged and neutral pions are boosted in RF of $\pi^+\pi^-$
- acoplanarity angle ϕ^* : angle between $\,\rho^\pm$ decay planes
- introduce variable

$$y^{\pm} = E_{\pi^{\pm}} - E_{\pi^{0}}, \ y = y^{+}y^{-}$$

- ϕ_{CP} is defined in the range [0,2 π] y > 0: $\phi_{CP} = \phi^*$ y < 0: $\phi_{CP} = 2\pi - \phi$
- Method is extended to the case of $\tau^{\pm} \rightarrow a_1^{\pm}(\pi^+\pi^0\pi^0)\nu$ decay
 - electromagnetic constituents of τ are combined together to form $\pi^0\pi^0$ -system that is treated analogously to π^0 in $\tau^{\pm} \to \rho^{\pm}(\pi^+\pi^0)\nu$ decay

Mixed (IP-NP) method

- Mixed method is used when:
 - one τ decay via $\tau^{\pm} \rightarrow \pi^{\pm} \nu, \ell^{\pm} \nu \nu$ \rightarrow decay plane is reconstructed with λ^{\pm}
 - while another via $\tau^{\pm} \rightarrow \rho^{\pm}(\pi^{+}\pi^{0})\nu, a_{1}^{\pm}(\pi^{+}\pi^{0}\pi^{0})\nu$

ightarrow decay plane is reconstructed with $ec{p}_{\pi^0(\pi^0)}$

- definition of ϕ_{CP} via ϕ^* depend on variable

$$y^{\pm} = E_{\pi^{\pm}} - E_{\pi^{0}(\pi^{0})}$$

$$\Rightarrow \qquad \begin{aligned} y^{\pm} > 0 : \phi_{CP} &= \phi^* \\ y^{\pm} < 0 : \phi_{CP} &= 2\pi - \phi \end{aligned}$$

Reconstruction of decay plane in $T \rightarrow a_1 v$

• Decay $\tau^- \rightarrow a_1^- \nu \rightarrow \pi^- \pi^- \pi^+ \nu$ proceeds via intermediate ρ^0 resonance :

$$a_1^- \to \rho^0 \pi^- \to (\pi^+ \pi^-) \pi^-$$

- Most of tau spin information is carried by ρ^0 resonance which is treated as tau polarimeter
 - $\rightarrow (\pi^+\pi^-)$ pair with mass closest to m_{ρ^0} is selected as ρ^0 candidate
 - \rightarrow decay plane is defined as a plane spanned by π^+ and $\,\pi^-$ from $\,\rho^0 \rightarrow \pi^+\pi^-$

Reconstruction of hadronic tau decays

Hadron+strip (HPS) algorithm is used to reconstruct hadronic tau decays (T_h)

- inputs : reconstructed PF candidates (γ, e[±], μ[±], h[±], h⁰)
- seeded by AK4 jets
- e/ γ within $\eta \times \phi$ strips of dynamic size are collected and considered as π^0 candidates
- strips are combined with PF candidates identified as charged hadrons (h[±]) to form four possible configurations
 1. h[±] and no strips
 2. h[±] + one or two strips
 3. h[±]h[∓] and no strips
 - 4. $h^{\pm}h^{\pm}h^{\mp}$ + one strip
- all constituents must lie within a cone $\Delta R_{sig} = 3/p_T^{\tau} [\text{GeV}]$ (with ΔR_{sig} limited to range 0.05-0.1)

Discrimination of genuine T_h against fakes

 21×21 cells ($\eta \times \phi = 0.05 \times 0.05$)

φ

 11×11 cells

 $\eta \times \phi = 0.02 \times 0.02)$

- Hadronic tau decays can be mimicked by QCD jets, electrons and muons
- Deep convolutional neural network (DeepTau) developed to discriminate τ_h against fakes
- Network combines
 - low-level information : PF candidates per cell in the fine/coarse η×φ grid around τ axis
 - high-level information : kinematics of constituents, isolation variables, PU density

Signal cone

Isolation cone

Identification of T_h decay modes

- HPS is not optimized to count π^{0} 's in hadronic decays of tau leptons
- To improve decay mode identification two independent BDT classifiers are trained for 1 and 3-prong τ decays
 - Inputs:
 - \rightarrow invariant mass of $\pi^{\scriptscriptstyle 0}$ and ρ candidates
 - \rightarrow kinematics of τ constituents
 - \rightarrow angular separation between τ constituents
- Purity has improved by 10-20% compared to HPS algorithm
- Classifier provides also access to $a_1(1-prong)$ decay mode

Reconstruction of impact parameters

 impact parameters (IP) reconstruction relies on precise measurement of primary vertex (PV)

 with BS constraint precision in the reconstruction of transverse IP is improved by a factor of 3!

- several PV choice have been studied
- PV reconstruction is improved by:
 - excluding tracks, originating from τ-lepton decay, from vertex fit
 - including beam spot (BS) constraint in the vertex fit

Analysis Overview

- Analysis is performed on 137 fb⁻¹ of data collected with CMS at center-of-mass energy of 13 TeV
- Production mechanisms considered : $gg \rightarrow H, \ qqH, \ VH$
- Final states exploited : $\tau_{\mu}\tau_{h}$, $\tau_{e}\tau_{h}$, $\tau_{h}\tau_{h}$ (e, $\mu, \pi, \rho, a_{1}^{1pr}, a_{1}^{3pr}$) × $(\pi, \rho, a_{1}^{1pr}, a_{1}^{3pr})$
- Triggers and offline selection

Channel	Year	Trigger requirement	Offline $p_{\rm T}$ (GeV)
$ au_{ m h} au_{ m h}$	All years	$ au_{\rm h}(35) \& au_{\rm h}(35)$	$p_{\mathrm{T}}^{ au_{\mathrm{h}}} > 40$
$ au_{\mu} au_{ m h}$	2016	$\mu(22), \mu(19) \& \tau_{\rm h}(20)$	p_{T}^{μ} $>$ 20, $p_{\mathrm{T}}^{ au_{\mathrm{h}}}$ $>$ 25
	2017, 2018	$\mu(24), \mu(20) \& \tau_{\rm h}(27)$	p_{T}^{μ} $>$ 21, $p_{\mathrm{T}}^{ au_{\mathrm{h}}}$ $>$ 32
$ au_{ m e} au_{ m h}$	2016	e(25)	$p_{\mathrm{T}}^{\mathrm{e}} > 26$
	2017	$e(27)$, $e(24)$ & $\tau_h(30)$	$p_{ m T}^{ m e} >$ 25, $p_{ m T}^{ au_{ m h}} >$ 35
	2018	$e(32)$, $e(24)$ & $\tau_h(30)$	$p_{ m T}^{ m e} > 25, p_{ m T}^{ au_{ m h}} > 35$

What are the most important backgrounds?

- S/B weighted summary plot of the di-T mass distribution illustrates what major backgrounds are
- Background with genuine tau lepton pairs (Z→TT, top pairs, dibosons, ...)
 → estimated from data using tau-embedding technique
- Processes with jets misidentified as hadronic tau decays (QCD multijets, W+jets, ...)
 - → estimated from data with **fake factor** method
- Contribution of other backgrounds is subdominant
 - \rightarrow evaluated with MC simulation with appropriate corrections applied

15

Data driven background modeling

- Irreducible background with 2 genuine τ's (Z→ττ, ttbar, dibosons) is modeled with τ-embedding
- → replace muons in selected µ⁺µ⁻ events from data by simulated τ decays
- → data-driven description of detector activity except for ⊤ decays

JHEP 09 (2018)007

- Background with jet→T fakes (QCD, W+jets, ttbar)
- → compute jet→⊤ mis-id probabilities (fake factors) in determination regions (DR)
- → weight events in application region (AR) with fake factors to estimate background in the signal region (SR)
- in total ~90% of background is estimated from data

Signal vs background discrimination

- Multivariate discrimination between signal and background
 - kinematic properties of tau leptons, accompanying jets and missing transverse momentum are exploited
- Multi-classifiers are developed based on state-of-art ML techniques
 - $\rightarrow \tau_h \tau_h$: boosted decision trees implemented with XGBoost
 - $\rightarrow \tau_\ell \tau_h$: feed forward neural network
- Events classified into 3 categories
 - Higgs signal
 - events with genuine tau leptons
 - events with tau leptons mimicked by hadronic jets

doi:10.3204/PUBDB-2021-03550

Observable	$ au_\ell au_h$	$\tau_{\rm h} \tau_{\rm h}$
$p_{\rm T}$ of leading $\tau_{\rm h}$	\checkmark	\checkmark
$p_{ m T}$ of trailing $ au_{ m h}$		\checkmark
$p_{ m T}$ of $ au_\ell$	\checkmark	
$p_{ m T}$ of visible di- $ au$	\checkmark	\checkmark
$p_{\rm T}$ of di- $ au_{ m h}$ + $p_{ m T}^{ m miss}$		\checkmark
$p_{\rm T}$ of $\tau_\ell \tau_{\rm h}$ + $p_{\rm T}^{\rm miss}$	\checkmark	
Visible di- τ mass	\checkmark	\checkmark
Di- $ au$ mass (using SVFIT)	\checkmark	\checkmark
Leading jet $p_{\rm T}$	\checkmark	\checkmark
Trailing jet $p_{\rm T}$	\checkmark	
Jet multiplicity	\checkmark	\checkmark
Dijet invariant mass	\checkmark	\checkmark
Dijet $p_{\rm T}$	\checkmark	
Dijet $ \Delta \eta $	\checkmark	
$p_{\rm T}^{\rm miss}$	\checkmark	\checkmark

Statistical inference

- Simultaneous fit in all channels/categories:
 - **MVA score** distribution in background categories (constrains uncertainties in background estimates)
 - two-dimensional distribution of MVA score vs. φ_{cP} in signal categories
- freely floating parameters in the fit: $\alpha^{{\mbox{\tiny H}}\pi}$ and signal strength modifiers $\mu_{{}_{ggH}}$ and

Results

- Measured value of $\alpha^{H\tau\tau}$ = (-1±19(stat)±1(sys)±2(bbb)±1(theo))°
- Results are also interpreted in terms of constraints on $(\kappa_{\tau}, \tilde{\kappa}_{\tau})$ assuming SM predictions for all other Higgs boson couplings

Combined ϕ_{CP} distribution

- To illustrate the results, four most sensitive channels (pp, π p, µp and ep) are combined into a A×S/(S+B) weighted plot of $\phi_{\rm CP}$
- Data show clear preference for CP-even hypothesis
- Hypothesis of pure CP-odd coupling is rejected at 3σ (expected exclusion is 2.6 σ)

Projection of sensitivity

with additional LHC data and improved analysis techniques, precision of better than 10° in CP-mixing angle is plausible
→ good target for future analysis with Run 3 and HL-LHC data
→ sensitive probe of the lepton flavored electroweak baryogenesis models (see for example Phys. Rev. D 103, 095027 (2021), arXiv:1206.2942 and Phys. Rev. D 96, 115034 (2017))

Summary

- The CP structure of the Yukawa coupling between Higgs and tau leptons is investigated by the CMS collaboration with 137 fb⁻¹ of LHC Run 2 data
- CP-mixing angle in the Hττ coupling measured to be α^{Hττ} = (-1 ± 19)° and is consistent with the SM prediction of pure CP-even coupling
- Hypothesis of pure CP-odd coupling is rejected at 3σ level
- Uncertainty of measurement is statistics dominated!

Courtesy of Anna Penkner and Renate Pommerening Designdoppel GbR

 With additional LHC data expected in Run 3 and after HL upgrade, uncertainty in the CP-mixing angle can be reduced well below 10°
 → sensitive probe of the electroweak scale baryogenesis models

Combined ϕ_{CP} distribution

- To illustrate the results, four most sensitive channels (pp, πp , μp , ep) are combined into a plot of ϕ_{CP}
- Each BDT/DNN score bin in 2D distribution is weighted by $A\times S/(S+B)$
 - S : expected signal yield (in a given BDT/NN bin)
 - B : expected background yield
 - A : average asymmetry

$$A = \frac{1}{N_{\text{bins}}} \sum_{\text{bins}} \frac{|N^{\text{CP}-\text{even}} - N^{\text{CP}-\text{odd}}|}{N^{\text{CP}-\text{even}} + N^{\text{CP}-\text{odd}}}|$$

- Data show clear preference for CP-even hypothesis
- Hypothesis of pure CP-odd coupling is rejected at 3σ (expected exclusion is 2.6σ)

Two-dimensional likelihood scans

- Results of the analysis are interpreted in terms of 2D scans
 - H \rightarrow tt signal strength modifier (μ) vs CP mixing angle ($\alpha^{H\tau\tau}$)
 - CP-odd ($\tilde{\kappa}_{\tau}$) vs CP-even (κ_{τ}) components of the HTT Yukawa coupling
- best fit values are consistent with the SM predictions within 1 st.d.

CP H→TT analysis by ATLAS

- CP H→TT analysis in ATLAS (Eur. Phys. J. C 83 (2023)) is similar in spirit to the CMS analysis
 - di-tau decay modes considered:

$$\{e^{\pm}, \mu^{\pm}, \pi^{\pm}, \rho^{\pm}, a_1^{\pm}\} \times \{\pi^{\mp}, \rho^{\mp}, a_1^{\mp}\}$$

 dedicated event categorization targeting VBF and boosted production mechanisms

Combined $\phi_{\mbox{\tiny CP}}$ distribution by ATLAS

- Observed results in the ATLAS H analysis are illustrated by the combined postfit distribution of CP observable
 - Events are weighted by log(1+S/B) of the respective event categories and decay modes

