Search for CP Violation
in Hott Decays at CMS

Alexel Raspereza
on behalf of the CMS Collaboration

CHEP-Yerevan, 11/09/2023



Introduction

* Origin of Baryon (matter-antimatter) Asymmetry in the Universe (BAU)

remains one of the main riddles in contemporary cosmology
* asymmetry of 10-°-10° is required at the stage of baryogenesis to explain the
observed dominance of matter over antimatter in nowadays Universe

* Sakharov conditions to generate BAU
* baryon number violation
* interactions out of thermal
equilibrium
* C and CP violation

—

10,000,000,000

* Single complex phase in CKM matrix : 10,000,000,007
source of CP violation in the SM
* observed in decays of kaons, D and B mesons

* insufficient to explain the observed BAU

* Are there other sources of CP violation?
* with the discovery of the Higgs boson, the scalar sector of theory has
become new domain to search for CP violation




Higgs CP properties investigated at the LHC

* CP properties of the HVV couplings Phys Rev D 108 (2023) 032013

CMS 138 fo™ (13 TeV)

extensively studied by CMS and ATLAS o T e
in production ( VBF, VH ) S b B
and decays ( H-ZZ) g
— stringent upper limits are set on E
CP-odd terms of HVV couplings °
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* ttH production and H—TT decays: mOEN?SL 1 061801137fb1(13m>
excellent probes of the CP structure sof- ! Ej‘ao' S
of Yukawa couplings % o1 B, owe/ ]
— CP-odd term can contribute £ sob g 2]
to coupling at tree level £ s TT2ORTETE 3
— measurements of ttH production at LHC a e
disfavor pure CP-odd Htt coupling 20f
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* This talk : measurements of the Higgs boson CP properties in HoTT decays by
CMS ( JHEP 06 (2022) 012)
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CP observable in H-TT decays

* Yukawa coupling (general case):

myr _ - .
Ly = — (/177'7' + /-4377'2757')1{
v
/i Hrr /2"7'
* CP-mixing angle : tan (o' 77) = —
R+

* CP observable : angle between tau
decay planes in the Higgs boson rest

frame, ¢cp
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* decay plane : plane spanned by
* tau momentum, p
* polarimetric vector h_ : most probable
orientation of T spin (defined by
kinematics of T decay products)

Information on CP mixing angle is encoded in
the distribution of @cp

2

~1— b(z)b(z7) cos (bcp —2a"77)
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b(x*) - spectral functions, encapsulating

dependence of the tau polarization on the
momentum fraction (z*) carried by the
charged lepton or mesonic resonance




Reconstruction of T decay planes

* exact reconstruction of tau decay planes in the Higgs rest frame (RF) is not
feasible due to undetected neutrinos — use approximations
S 7T:|:V (Tov N
spanned by |mpact parameter vector)\ and momentum of 7 (€ )
T ) (ﬂ'i?TO)V, ali(ﬂiﬁowo)
spanned by momenta of charged pion and neutral pion system

- decay planes are reconstructed in the RF of 717~ (Wiéﬂ

Z
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Impact parameter (IP) method

* IP method is applied in case

of the following decays: * Impact parameter vectors are
o () (), boosted in RF of 77~ (7*¢F)
7T = () ((Fov) Pt+P =0

z * acoplanarity angle

A Lo

! ¢* = arccos ()\1L : )\1)

A

T(L7) * introduce observable

O* =P~ - (At x A7)
A_\

* ¢cp is defined in the range [0,2n]
O">0: ¢pcp=¢
Yo+ VAT O <0: ¢cp =21 — &*




Neutral-Pion (NP) method

* NP method targets primarily case  « 4-vectors of charged and neutral

when both 1 leptons decay via pions are boosted in RF of ata

Tt ,0i (7T+7TO)V

R » acoplanarity angle ¢™ : angle
: between p* decay planes
A o
* introduce variable
N yt =E.x — Fpo, y=yty~

* ¢cp is defined in the range [0,21]
Yot y>0: dop=¢
E y<0: pop =21 — ¢

* Method is extended to the case of 7+ — aF (7t7%7%)r decay

* electromagnetic constituents of T are combined together to form 7’7-system
that is treated analogously to 7° in 7+ — p* (7T 7°%)v decay




Mixed (IP-NP) method

* Mixed method is used when:
* one Tdecay via 7t — v, (FToy
— decay plane is reconstructed with A*

- while another —via 7+ — p* (7T 7% v, aF (7T 7070)v

— decay plane is reconstructed with pro(r0) i
» definition of ¢cp via ¢ depend on T (07)
variable 0
n 7T
Yy = Eﬁi — Eﬂ-O(ﬂ-O) \




Reconstruction of decay plane in 1—a v

Ty

*Decay v —a,v—>m T K
proceeds via intermediate ,0
resonance :

a; — p'n” = (ntr )7

* Most of tau spin information is
carried by p" resonance which is
treated as tau polarimeter
— (w7 7)- pair with mass closest

to m o is selected as p’ candidate

— decay plane is defined as a plane

spanned by 77 and 7~ from pO — T

-




Reconstruction of hadronic tau decays

Hadron+strip (HPS) algorithm is used to
reconstruct hadronic tau decays (T,)

* inputs : reconstructed PF candidates
(V7 ei’ “i, hi’ hO)

* seeded by AK4 jets

* ely within nX¢ strips of dynamic size are
collected and considered as 11° candidates

* strips are combined with PF candidates
identified as charged hadrons (h*) to form
four possible configurations
1. h* and no strips

+ one or two strips

and no strips

+ one strip

Decay mode Resonance B (%)
Leptonic decays 352
T~ > e Verr 17.8
T 2 UVuVe 17.4 .
Hadronic decays 64.8

7T > h7y 11.5

7~ - h 7, p(770) 259 | |

v~ — h 7070, a,(1260) 9.5 ‘\

T~ = h hthv, a1(1260) 9.8 '\

7~ = hh*h 7%, 48 '|I

Other 33 |

)
— hadron =
ﬂ.:l:
strip HCAL
ECAL
p
tracker
ot
+ + +.0
TS = PV =TTV,
- /

* all constituents must lie within a cone ARy, = 3/pt [GeV]

(with- A R, limited to range 0.05-0.1)
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Discrimination of genuine 1,_against fakes

. . . 21 x 21 cells (n x ¢ = 0.05 x 0.05)
* Hadronic tau decays can be mimicked by QCD /f,;__x\
jets, electrons and muons 2 ™
* Deep convolutional neural network (DeepTau) // H
. . . . llxl.lv(\s
developed to discriminate 1_against fakes | ] \
* Network combines ¢ ke
* low-level information : PF candidates per SnmmEEEEEE
cell in the fine/coarse nx¢ grid around t axis \ / o ——
* high-level information : kinematics of NG e
constituents, isolation variables, PU density T
>
X0 CMSrelminary 2018, 50.7 5 (13 TeV) <10° CMS Preiminary 2018, 59.7 16" (13 TeV)
8 250 ut, : MVAOIdDM2017v2 . DeepTau: E 2501 , : I‘)eepTa‘uID201|7v2p1 | | .
o ', Observed - increases genuine 11D o | . Observed
~ 200~ [ibrellyan > 7, 7 gefficiency by ~ 20%, ~ 200 [IDrell-Yan — 7,1,
2 - MDrell-Yan with | = 7 - 2 - [ Drell-Yan with | — =,
S mprelvanwithj—%, - reduces fake rate by ~23% 5 | [Drell-Yan with j — 7,
> 150 EW +jets - > 150+ BEW +jets I
L i [t and single top o8 i [t and single top §
i [EDiboson ] P i [ Diboson ]
100+ [(JQCD multijet . 100+ [JQCD multijet -
E W post-fit unc. ] ‘ i W post-fit unc. ]
501 . | 50/ .
e JINST 17 (2022) P07023 ]
0 50 100 150 200 250 300 0 50 100 150 200 250 300
my;s [GeV] m,, [GeV]
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CMS Simulation Preliminary 2018 (13 TeV)

CMS Simulation Preliminary

Identification of T _decay modes

HPS is not optimized to count °'s in hadronic decays of tau leptons
To improve decay mode identification two independent BDT classifiers are
trained for 1 and 3-prong T decays
* Inputs:
— invariant mass of Tm° and p candidates
* — kinematics of 1 constituents

— angular separation between 1 constituents
Purity has improved by 10-20% compared to HPS algorithm
Classifier provides also access to a,(1-prong) decay mode

o

True label
o
H
MVA DM - Purity
purity

o
w

Predicted label

. MVA
m HPS

CMS DP-2020/041

0.7

+

n*2n0

0.82

3n*

2018 (13 TeV)




Reconstruction of impact parameters

* impact parameters (IP) reconstruction relies on precise
measurement of primary vertex (PV)

* several PV choice have been studied
* PV reconstruction is improved by:
* excluding tracks, originating from T1-lepton
decay, from vertex fit
Reference point * including beam spot (BS) constraint in the

I vertex fit
. / t \I\P“PVW\

Beam llne \ . .' \\.. e \ CMS Simulation Supplementary 2018 (13 TeV)
- Z i 5 pum ] i 5 um ] L 29 ym ]
Uncertainty band on S L N - 1 0.06 = J
PV reconstruction % 0.2r 1 02 ] C .'H'. ]
£t ] 1 004 | .
. . o Eap 1 oif 1..F |-
* with BS constraint precisionin = jﬁk 1 J"- 1020 0 T
the reconstruction of transverse 0.0ttt ] gl D 0.00 A 1 by . 1

L —0.01 0.00 0.01 —0.01 0.00 0.01 —0.02 0.00 0.0z
IP is improved by a factor of 3! Vreco. _ B (o) vieeo _ VE (c) yreeo. _ B (o)
[1 Nominal Refit + BS
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Analysis Overview

* Analysis is performed on 137 fb-' of data collected with CMS at
center-of-mass energy of 13 TeV

* Production mechanisms considered : gg — H, qqH, VH

* Final states exploited : 7, Th, TeTh, ThTh

(e, i1, m, p,ar™, alP) x (m, p,a™, alP")

* Triggers and offline selection

Channel Year Trigger requirement  Offline pt (GeV)
Th Th All years  1;,(35) & 7;,(35) pr > 40
2016 1(22), 1#(19) & 1,,(20)  ph > 20, p7* > 25
et 2017,2018  u(24), u(20) & 7,,(27) ph > 21, pIr > 32
2016 e(25) pT > 26
TeTh 2017 e(27), e(24) &1, (30)  p& > 25, pi > 35
2018 e(32), e(24) &1, (30) pS > 25, pft > 35
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What are the most important backgrounds?

* S/B weighted summary plot of the di-T mass distribution
illustrates what major backgrounds are

Background with genuine tau lepton pairs

(Z—1T, top pairs, dibosons, ...) Eur. Phys. J. C 83 (2023) 562

— estimated from data using e - - ool

tau-embeddlng technlque ES&"HETQQH (= 0.93) +3'é%g‘r‘3§a 138 fb' (13 TeV)

> £ T T T T | T T T T | T T T | T T T | T T
$*°C CMS ot S DR
Processes with jets misidentified as Sk St —aat +gor]

. . 210 ~- Obs. - bkg.]

hadronic tau decays (QCD multijets, 8\ T ’:
WH+jets, ...) %60"‘ Eo E
— estimated from data with fake factor = R
method % 4001 _J e e
m,; (GeV) -

w

[=]

o
I

Contribution of other backgrounds is ook g

subdominant \ ‘!;;CB-analysis
100—= -

— evaluated with MC simulation with S .
appropriate corrections applied R - R I%ﬂ(claelv)
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Data driven background modeling

w — JINST 14 (2019) P06032

* Irreducible background with 2 genuine 1's ml

(Z—T1T, ttbar, dibosons) is modeled with Z - s seection

T-embedding e Y e
— replace muons in selected p*u- events : e

from data by simulated T decays bo  ELBE
— data-driven description of detector activity » e o

except for T decays ey S e

P
Y

JHEP 09 (2018)007 o
* Background with jet—T fakes

R Fr=d wli (QCD, W+jets, ttbar)
_ Nig — compute jet—T1 mis-id probabilities (fake
TFF o > Nir factors) in determination regions (DR)
AR ’ — weight events in application region (AR)

i,7 € {QCD, Wjets, tt} ] - .
with fake factors to estimate background in

TFch'\FFWHets P the signal region (SR)

DRQCD DRW+jets DRT‘ . 1
- * in total ~90% of background is
fTaken from simulation estimated from data
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Signal vs background discrimination

Multivariate discrimination between signal and background
* kinematic properties of tau leptons, accompanying jets and missing transverse
momentum are exploited

Multi-classifiers are developed based on state-of-art ML techniques
— ThTh : boosted decision trees implemented with XGBoost

— T¢Th : feed forward neural network
* Events classified into 3 categories

* Higgs signal

* events with genuine tau leptons
* events with tau leptons mimicked by

hadronic jets

X

B
Ny

Input features

PhD thesis of Andrea Cardini
doi:10.3204/PUBDB-2021-03550

Observable

Ay
a

...................

.....................

pr of leading T,

pr of trailing 5,

Pt of Ty

pr of visible di-T

pr of di-7, + pHiss
pr of T,y + p7*°
Visible di-T mass
Di-T mass (using SVFIT)
Leading jet pr
Trailing jet pr

Jet multiplicity
Dijet invariant mass
Dijet pt

Dijet |An|

pgrniss

N N NN N N N N NE RN

5
DN N N N S N AN E

\
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Statistical inference

* Simultaneous fit in all channels/categories: O .i?hﬂ:‘l.(l?T?V)
P 110 T bkg. Bkg. unc.
< 107 - Jet — T, — BestfitH — 11 ]|

* MVA score distribution in background categories
(constrains uncertainties in background estimates)

0ok e

e =
« two-dimensional distribution of MVA score vs. ¢, I —
. . S B B
in signal categories g af I 3
e 2F . =
EE 0 { —— i E
. . . 28 oy
* freely floating parameters in the fit: 0.4 06 08 1o
HTT . - score
a"™ and signal strength modifiers Hogh and Hytsgqn
CMS 0p 137 fb~! (13 TeV) CMS 1o 137 fb~! (13 TeV)
% . I(0.?;3, (I)7)I ! I(0.I7, OI.S)I I(O.IS, OI.9)I ! I(0.I9, 1I.0)I - "% §(|0.3I3,0|.45|) ! I(o.is,E),e)' ! I(o.le,ol.7)I ! I(o.l7,0|.8)I ! I(o.ls,oly)I ! I(0.|9,1I.0)I I Observed
g 10 ! ERART e prosmopes ! ! ! B Best fit H — t7
i S y : I i 7T bkg.
102 i 102 ; i i i IOe’:hZ‘STh
F ! ! ! Bkg. unc.
i 1 — PSH —> 17
10! i 101 E . ] — Bestfit—>H—>TT
1208 [ R N P T T I [ T N 100 i i 11l (L i
‘ A "I 30 | | A g!
2 : i i e 20 i i i . i
“fi 10 { ! H 'I{H H%‘fl“ i 102:{ 'f .
g op . T i gr  of BRI N
RN: 1 Rl W 04 S AR R s 1241y NG AR R L L R
0 10 20 30 40 0 10 20 30 40 50 60
Bin number Bin number
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* Measured value of o™ = ( -1

+19(stat)+1(sys)+2(bbb)=+1(theo) )°

- Results are also interpreted in terms of constraints on (K<, K1)
assuming SM predictions for all other Higgs boson couplings

, CMS 137 fb ' (13 TeV) , CMS 137" (13 TeV) -
i ) 1 ) I I ) | 1[~J I 1 ) I I .I 1 ) I I
B — Observed: aHbTT: 14190 (68 3% CL) = [ # Bestfit — 68.3% CL
[ Expected: 2517 = 0 + 21 °(68.3% CL _ - * SM - 955%CL } | ]
OF . Xpecied feop. ( )] [ — 99.7%CL 4 |20
C A 1k - |7
i J15
[ 15 0
0 C — i
- 10 |
1k _
- 5
--------------------------------------- i K,=1%=0Vi#T
1 1 1 1 1 1 1 I 1 1 1 _2 1 1 1 1 I 1 I 1 I 1 1 O
—90 —45 0 45 90 -2 —1 0 1 2
aH77 (degrees) Kt
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Combined ¢, distribution

* To illustrate the results, four most sensitive channels (pp, Tp, Yp
and ep) are combined into a AXS/(S+B) weighted plot of ¢cp

* Data show clear preference for CP-even hypothesis

* Hypothesis of pure CP-odd coupling is rejected at 30 (expected
exclusion is 2.60)

CMS 137 fb (13 TeV)
-E T T T | T T T T l T T T :
S | ,F —+ Obs.—Bkg. PP + TP + U + €p
(% ~ | | Bkg. unc. .
§ 12—t = 0° =
(0] T aH‘C‘C - 90° .
o 1= ? —
9 - — ]
-g» | _|
.G;) 0.8:— : —— . ~
= 06—, | I o —
+ — —]
D ooal-| —e— | —
%) - .
< 02 -
- —— _
I e e ETTEELS -
L | | Lo L | -

0 60 120 180 240 300 360
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Projection of sensitivity

CMS projection Phys. Rev. D 103, 095027 (2021)

CMS Supplementary Projection (13 TeV) L .
1 e L L L L L L y
r A, AT ¥
S 60f —— 137 fb" G, =0+ 21 ] _
< —— 30007 &, =0+ 14 : 04 )
N i . ]
! 50 1 AHw ° ]
i —— 3000 b : Oy, =0 £5 ] .
C ] ; 027_ LHC i
40 i __ ‘ 70 ) —— LHC-F
i i < e — cepen
B T = FCC-ee p
- 1 @ 0.0 .
30_ ] 8 T —_ CEPlé
e WY AU 1 - FCC-
L ’ —= ILC
20 - a —0.2- L
10f ] —0.4+ -
0:.|...|...|.... e B B . BAU
-80 -60 -40 -20 0 20 40 60 80 ' '0'6' S 1‘2 '1'4' ‘

o™ (degrees)

with additional LHC data and improved analysis techniques,

precision of better than 10° in CP-mixing angle is plausible
— good target for future analysis with Run 3 and HL-LHC data
— sensitive probe of the lepton flavored electroweak baryogenesis models
( see for example Phys. Rev. D 103, 095027 (2021), arXiv:1206.2942
and Phys. Rev. D 96, 115034 (2017) )
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* The CP structure of the Yukawa coupling between Higgs and tau leptons
is investigated by the CMS collaboration with 137 fb-' of LHC Run 2 data

* CP-mixing angle in the Htt coupling
measured to be o™ = (-1 = 19)°
and is consistent with the SM
prediction of pure CP-even coupling

* Hypothesis of pure CP-odd coupling
IS rejected at 30 level

* Uncertainty of measurement is
statistics dominated!

Courtesy of Anna Penkner and Renate Pommerening
Designdoppel GbR

* With additional LHC data expected in Run 3 and after HL upgrade,
uncertainty in the CP-mixing angle can be reduced well below 10°
— sensitive probe of the electroweak scale baryogenesis models
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A : average asymmetry
‘NCP—even .

—
'.|>

—
o

NCP—even + NCP—odd

—_

o
e

* Data show clear preference
for CP-even hypothesis

o
2}

S/(S+B) weighted events / bin

A

* Hypothesis of pure CP-odd
coupling is rejected at 30
(expected exclusion is 2.60)

o

Combined ¢, distribution

S : expected signal yield (in a given BDT/NN bin)
B : expected background yield

* To illustrate the results, four most sensitive channels (pp, Tp, HpP,
ep) are combined into a plot of ¢,

* Each BDT/DNN score bin in 2D distribution is weighted by
Ax S/(S+ B)

CMS 137 fb (13 TeV)
-+Ob3—5k9 pp+np+up+ep__
- [ | Bkg. unc. ]
:__ OCHW =0° _:
- — o= 90° . E
:— 1 | —— | _:
C _]
s =
- e ]
E 1 | | 1 1 1 | E
0 60 240 300

¢CP(degrees)
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Two-dimensional likelihood scans

137 13 T CMS 137fb 13 TeV
= 200 FMSI U UL | 3 fb ( 3 eV) ] lé“ 2 L | I B I | ( ) 25
- % SM — 68 3% CL3 | " & Best fit — 68 3% CL
1.75 4 Best fit -- 955% CL- | | * SM -- 955%CL ] |1
: — 99.7%CL 1 |- - — 99.7%CL 4 |420
1.50 3 |1 Ir P 71 |1
125E " _ i J15
- i 15 o0
1.00 0 B — i
0.75 i 10 |
0.50 1k N
- 5
0.25 1
OOO 1 1 I 1 1 1 I 1 1 1 I 1 1 1 _ i 1 1 1 1 | 7]
—90 —45 0 45 90 2_2 2 0
aHTT (degrees) Kt

* Results of the analysis are interpreted in terms of 2D scans
 H-1T signal strength modifier (1) vs CP mixing angle ( o777)
* CP-odd (k) vs CP-even (+x+) components of the HTT Yukawa
coupling
* best fit values are consistent with the SM predictions within 1 st.d.
25




CP H-1T1 analysis by ATLAS

* CP H—11 analysis in ATLAS ( Eur. Phys. J. C 83 (2023) ) is similar
in spirit to the CMS analysis
* di-tau decay modes considered:

i i i +
{ 5 7a1}><{7T:F710:F7aT:}
* dedicated event categorization targeting VBF and boosted
production mechanisms

j 1: LA L B L B T T LI L L L :1 15 2:‘ [T T T T rTT TT T T TT] l:
£ 7E ATLAS —— Observed: 62 = 9+16° (68% CL) 7 1.8~ + Bestfit =16 -
< 65 {s=13TeV, 139fb" ... Expected: 7 = 0+28° (68% CL) 1.6:— ¥ SM 20 3
- / 1.4F E
5 - ] C ,/,' \\‘ 7
= = 1.2 .
4 E 1= / | .
3F = 0.8 S
TR W A 1 0.6 -
- . 0.4 .
= - - ATLAS

- B / . 0.2 s-13Tev, 139 b -
o [REEFN o Lo L 1T Colvvw b v b b b b b 147

080260 40 =20 0 20 40 60 80 02802604020 0 20 40 60 80
¢_[degrees] 0_[degrees]
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Combined ¢, distribution by ATLAS

* Observed results in the ATLAS H analysis are illustrated

by the combined postfit distribution of CP observable
* Events are weighted by log(1+S/B) of the respective event

categories and decay modes

In(1+S/B) weighted events

T B I I I I I I R
- ATLAS —e— Data - Bkg. i
~ {s=13TeV, 139 ™ H—tt (9= 9°) -
35 All SRs 77 Uncertainty ]
N — H—11 (¢_ = 0°) i
30__ — — H—>11 (§_=90°) ]
- / .
25— | 7,
B )y ]
7 V/Y_._ I_I_I_ Y 7z
2074 v
B ¢ ¢ 1
15— o
:I 1 11 | L 111 I 111 1 I 111 1 | 111 1 | I | | L1 11 I L 11 1 I 1 1 1 l:
0 40 80 120 160 200 240 280 320 360

o* [degrees]
CpP
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