

Latest FCNC results from the CMS experiment

Gholamhossein Haghighat on behalf of the CMS collaboration

Conference on High Energy Physics A.I. Alikhanyan National Science Laboratory, Yerevan, Armenia

11-14 Sep 2023

Flavor-Changing Neutral Currents involving a top quark

FCNC forbidden at tree level in SM, highly suppressed by the GIM mechanism beyond the tree level

Any enhancement in the BR i Hint of BSM!

Flavor-Changing Neutral Currents involving a top quark

FCNC t-y

Signal Regions 1y, 1e/µ

$$\begin{cases} SR1: N_{jet} = 1, N_{b-jet} = 1 \\ SR2: N_{jet} \ge 2, N_{b-jet} = 1 \end{cases}$$

Backgrounds

Prompt photon

Simulation-based

Data-driven corrected: $tt\gamma$ + jets, $W/Z \gamma$ + jets

\succ jet $\rightarrow \gamma$ misid

Data-driven method based on ABCD technique

Photon-Like Jet (PLJ) region enriched in fake photons **Extrapolation Factor** to transfer from PLJ region to SR

\succ jet $\rightarrow e/\mu$ misid

Fake Rate method

FR computed in a dijet enriched region with $j \rightarrow l$ misid Suitably defined CR reweighted by *FR*

$\succ e \rightarrow \gamma$ misid

Data-driven corrected simulation $\mathbf{CRs} \begin{cases} 2 \text{ tight } e, |m_{ee} - m_Z| < 10 \text{ GeV} \\ 1 \text{ tight } e, 1 \text{ medium } \gamma, |m_{e\gamma} - m_Z| < 10 \text{ GeV} \\ \text{Jet/b-jet requirements same as SRs} \\ Nev(Data)/Nee(Data) \end{cases}$

$$SF = \frac{N_{e\gamma}(Data)/N_{ee}(Data)}{N_{e\gamma}(MC)/N_{ee}(MC)}$$

FCNC $t-\gamma$

Strategy >>>> Multivariate classification based on BDT

- 13 input variables Most important ones $\begin{cases} \mathbf{SR1:} p_{\mathrm{T}}^{\gamma}, \Delta \mathrm{R}(\ell, b\text{-jet}), m_{top}, \Delta \mathrm{R}(top, \gamma) \\ \mathbf{SR2:} m_{iet+\nu}, p_{\mathrm{T}}^{\gamma}, m_{top}, \Delta \mathrm{R}(\ell, b\text{-jet}), \Delta \mathrm{R}(\ell, \gamma) \end{cases}$
- \geq Separate BDTs for *tuy/tcy* channels

Most important uncertainty sources

Non-prompt γ , normalizations of $Z\gamma$ + jets and $W\gamma$ + jets, misidentified γ

Limits obtained by combining SR1 and SR2

Combined	Obs. limit	Exp. limit	$\pm 1\sigma$ (exp. limit)	$\pm 2\sigma$ (exp. limit)
$\kappa_{tu\gamma}$	6.2×10^{-3}	6.9×10^{-3}	$(5.9 - 8.4) \times 10^{-3}$	$(5.1 - 10.1) \times 10^{-3}$
$\kappa_{ m tc\gamma}$	7.7×10^{-3}	7.8×10^{-3}	$(6.7 - 9.7) \times 10^{-3}$	$(5.7 - 11.5) \times 10^{-3}$
$\mathcal{B}(t \rightarrow u + \gamma)$	0.95×10^{-5}	1.20×10^{-5}	$(0.89 - 1.78) \times 10^{-5}$	$(0.64 - 2.57) \times 10^{-5}$
$\mathcal{B}(t ightarrow c + \gamma)$	1.51×10^{-5}	1.54×10^{-5}	$(1.13 - 2.37) \times 10^{-5}$	$(0.81 - 3.32) \times 10^{-5}$

Improvement w.r.t. 8 TeV (19.8 fb^{-1}) CMS result 21511.03951

- \checkmark FCNC top decay mode, *e* channel, int. luminosity
- Factor 10/100 improvement in limits on $BR(t \rightarrow u\gamma)/BR(t \rightarrow c\gamma)$

FCNC *t*-*H* ($H \rightarrow b\overline{b}$)

- ✤ Top production/decay modes with 13TeV (137 fb⁻¹) data
- ✤ $1e/\mu$, $N_{jet} \ge 3$, $2 \le N_{b-jet} \le 4$ 5 SRs based on jet/*b*-jet multiplicity

2-step MVA Event rec: DNN selects the best jet assignment combination Signal-bkg separation: BDT

✤ Backgrounds

*

 $t\bar{t} + jets, t\bar{t}Z, t\bar{t}W, \dots$

✤ Uncertainties

b-tagging, jet energy scale/resolution, bkg cross section, ...

0.1

0.15

0.2

 $B(t \rightarrow Hu) (\%)$

0.25

FCNC *t*-*H* ($H \rightarrow b\overline{b}$)

- ✤ Top production/decay modes with 13TeV (137 fb⁻¹) data
- ✤ $1e/\mu$, $N_{jet} \ge 3$, $2 \le N_{b-jet} \le 4$ 5 SRs based on jet/*b*-jet multiplicity

✤ 2-step MVA

Event rec: DNN selects the best jet assignment combination Signal-bkg separation: BDT

✤ Backgrounds

 $t\bar{t}$ + jets, $t\bar{t}Z$, $t\bar{t}W$, ...

✤ Uncertainties

b-tagging, jet energy scale/resolution, bkg cross section, ...

***** Limits

FCNC *t*-*H* ($H \rightarrow \gamma \gamma$)

- * *tqH* coupling studied in $\gamma\gamma$ final state with top leptonic / hadronic decay modes (13 TeV / 137 fb⁻¹)
- ***** Multijet, γ +jets with $j \rightarrow \gamma$ misid bkg estimated from data
- ✤ NNs trained to best identify top decay products
- Separate BDTs for resonant & nonresonant bkgs used for SR definition
- Mass constraint variables / Quadratic equation method
- * $m_{\gamma\gamma}$ distributions fitted simultaneously

FCNC *t*-*H* ($H \rightarrow \gamma \gamma$)

- * *tqH* coupling studied in $\gamma\gamma$ final state with top leptonic / hadronic decay modes (13 TeV / 137 fb⁻¹)
- ***** Multijet, γ +jets with $j \rightarrow \gamma$ misid bkg estimated from data
- ✤ NNs trained to best identify top decay products
- Separate BDTs for resonant & nonresonant bkgs used for SR definition
- Mass constraint variables / Quadratic equation method
- * $m_{\gamma\gamma}$ distributions fitted simultaneously

 Limits
 Observed (Expected)

 BR(t \rightarrow uH) < 1.9 × 10^{-4} (3.1 × 10^{-4})</td>
 BR(t \rightarrow cH) < 7.3 × 10^{-4} (5.1 × 10^{-4})</td>

 Limits from $H \rightarrow b\overline{b}$ search JHEP 02 (2022) 169
 BR(t \rightarrow uH) < 7.9 × 10^{-4} (1.1 × 10^{-3})</th>
 BR(t \rightarrow cH) < 9.4 × 10^{-4} (8.6 × 10^{-4})</th>

- * *tZq* coupling studied using data produced at $\sqrt{s} = 8 \text{ TeV} (19.7 \text{ fb}^{-1})$
- Single top / top pair production in 3-lepton final states : 3e, $2e1\mu$, $1e2\mu$, 3μ

- BDT trained using top/Z kinematic variables, charge (asymmetry) of the lepton from W decay, jet/b-tagging properties
- ✤ Uncertainties: JES, JER, *b*-tagging, background normalization, ...

- * *tZq* coupling studied using data produced at $\sqrt{s} = 8 \text{ TeV} (19.7 \text{ fb}^{-1})$
- Single top / top pair production in 3-lepton final states : 3e, $2e1\mu$, $1e2\mu$, 3μ
- 1 jet **Selection:** ** (ST) 1 *b*-tagged jet 3 leptons (2 OSSF leptons in Z mass window) + \geq 2 jets $\geq 1 b$ -tagged jet CMS 19.7 fb⁻¹ (8 TeV) CMS 19.7 fb⁻¹ (8 TeV) % Events / 0.1 0.18 data 22 Observed tZq 20 Z Z nonprompt 0.16 Expected WZ WZ+h.f. Expected 68% CL ZZ ttv 277 uncertainty ш 0.12 -FCNC 0.1 0.08 0.06 Data/SM 0.04 0.02 discriminant BD. tf-FCNC 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

LimitsObservedExpected $BR(t \rightarrow uZ) < 2.2 \times 10^{-4}$ (2.7×10^{-4}) $BR(t \rightarrow cZ) < 4.9 \times 10^{-4}$ (1.18×10^{-3})

- * *tuZ* and *tcZ* couplings studied using 2016 data (13 TeV/35.9 fb⁻¹)
- **ST, TT** production modes
- ***** Both *Z*, *W* decay leptonically \rightarrow 3-lepton final states
- ✤ Important bkgs: WZ+jets, ttZ, SM tZq (3-lepton topology identical to signal)
- * Not prompt-lepton bkg coming from DY+jets, $t\bar{t}$

 BDT trained using kinematic observables and *b*-tagging information separately in each SR and lepton channel

- * *tuZ* and *tcZ* couplings studied using 2016 data (13 TeV/35.9 fb⁻¹)
- **ST, TT** production modes
- ***** Both *Z*, *W* decay leptonically \rightarrow 3-lepton final states
- ✤ Important bkgs: WZ+jets, ttZ, SM tZq (3-lepton topology identical to signal)
- * Not prompt-lepton bkg coming from DY+jets, $t\bar{t}$

***** Uncertainties:

. . .

NPL yield normalization, backgrounds cross sections, scale factors, jet energy scale,

- * *tuZ* and *tcZ* couplings studied using 2016 data (13 TeV/35.9 fb⁻¹)
- **ST, TT** production modes
- ***** Both *Z*,*W* decay leptonically \rightarrow 3-lepton final states
- * Important bkgs: WZ+jets, $t\bar{t}Z$, SM tZq (3-lepton topology identical to signal)
- * Not prompt-lepton bkg coming from DY+jets, $t\bar{t}$

Limits	Observed	Expected
$BR(t \rightarrow uZ)$	$< 2.4 \times 10^{-4}$	(1.5×10^{-4})
$BR(t \rightarrow cZ)$	$< 4.5 \times 10^{-4}$	(3.7×10^{-4})

Limits from JHEP 07 (2017) 003 BR $(t \rightarrow uZ) < 2.2 \times 10^{-4} (2.7 \times 10^{-4})$ BR $(t \rightarrow cZ) < 4.9 \times 10^{-4} (1.18 \times 10^{-3})$

FCNC t-g

* *tqg* studied using $5 f b^{-1}$ (7 TeV) and 19.7 $f b^{-1}$ (8 TeV) of data * SR: 1μ , $N_{jet} = 2$ or 3, $N_{b-jet} \ge 1$, $N_{non b-tagged} \ge 1$

Main backgrounds

➢ W+jets, tt̄ Constrained using dedicated CRs

> non-prompt μ

Mostly from multijet production

Estimated using CR defined by inverted isolation criteria **Suppressed** by imposing the cut BNN > 0.7 BNN trained with $M_T(W)$, $\Delta \phi(\mu, \vec{p}_T^{miss})$, ...

Signal extraction

Separate BNNs for *FCNC tug/tcg* signals p_z^{ν} obtained by *W* mass constraint

FCNC t-g

* *tqg* studied using $5 f b^{-1}$ (7 TeV) and 19.7 $f b^{-1}$ (8 TeV) of data * SR: 1μ , $N_{jet} = 2$ or 3, $N_{b-jet} \ge 1$, $N_{non b-tagged} \ge 1$

Main backgrounds

> W+jets, $t\bar{t}$ Constrained using dedicated CRs

 \succ non-prompt μ

Mostly from multijet production

Estimated using CR defined by inverted isolation criteria **Suppressed** by imposing the cut BNN > 0.7 BNN trained with $M_T(W)$, $\Delta \phi(\mu, \vec{p}_T^{miss})$, ...

tua FCNC BNN

Events/0.02

Drell-Yan

Multijet

Summary of the current observed limits

17

Summary of the current observed limits

Summary & outlook

Top quark measurements at the LHC provide a golden opportunity to test the SM and probe new physics. CMS experiment continues to analyze Top events to find deviations from the SM and shed light on unknown phenomena.

Current 95% CL observed (expected) limits on top FCNC decays by the CMS experiment:

 $\begin{array}{ll} {\rm BR}(t \to u\gamma) < 0.95 \times 10^{-5} \; (1.20 \times 10^{-5}) \\ {\rm BR}(t \to c\gamma) < 1.51 \times 10^{-5} \; (1.54 \times 10^{-5}) \end{array} & \begin{array}{ll} {\rm BR}(t \to uZ) < 2.2 \times 10^{-4} \; (2.7 \times 10^{-4}) \\ {\rm BR}(t \to cZ) < 4.5 \times 10^{-4} \; (3.7 \times 10^{-4}) \\ {\rm BR}(t \to cH) < 7.3 \times 10^{-4} \; (5.1 \times 10^{-4}) \end{array} & \begin{array}{ll} {\rm BR}(t \to ug) < 2.0 \times 10^{-5} \; (2.8 \times 10^{-5}) \\ {\rm BR}(t \to cg) < 4.1 \times 10^{-4} \; (2.8 \times 10^{-4}) \end{array} \\ \end{array}$

So far, there are no signs of any new physics! So, the upcoming searches are going to be very exciting!

FCNC t- γ >> Signal/Bkg

- * $tu\gamma/tc\gamma$ couplings studied in leptonic (e, μ) final states
- ***** Full Run II data (138 fb^{-1})

Selection

1 photon, 1 electron/muon

Signal Regions				
SR1	SR2			
$N_{jet} = 1, N_{b-jet} = 1$	$N_{jet} \ge 2, N_{b-jet} = 1$			
↓ ↓	↓ ↓			
top <i>production</i> mode	top decay mode			

Production mode

Decay mode

Backgrounds

Prompt photon

Simulation-based using parental info of photons *e.g.* $tt\gamma$ + jets, $W\gamma$ + jets, $Z\gamma$ + jets, $tj\gamma$, $WW\gamma$, $WZ\gamma$, $ZZ\gamma$ Data-driven corrected: $tt\gamma$ + jets, $W\gamma$ + jets, $Z\gamma$ + jets

- > Jets misidentified as photon (jet $\rightarrow \gamma$)
- > Jets misidentified as electron/muon (jet $\rightarrow e/\mu$)
- > Electrons misidentified as photon $(e \rightarrow \gamma)$

FCNC t- $\gamma \geq Background estimation$

Jets misidentified as photon (jet $\rightarrow \gamma$) \implies Data-driven method based on ABCD technique

Photon-Like Jet (PLJ) region:

Enriched in fake photons Defined by inverted γ ID/Iso (Loose ID)

Misidentified normalization in SR determined using the Extrapolation Factor:

$$\boldsymbol{EF}(\boldsymbol{p}_{T}^{\boldsymbol{\gamma}}) = rac{N_{A}^{\text{Mis.Id.}}(\boldsymbol{p}_{T}^{\boldsymbol{\gamma}})}{N_{PLJ}(\boldsymbol{p}_{T}^{\boldsymbol{\gamma}})}$$

Sideband regions defined by PFChIso, $\sigma_{i\eta i\eta}$ variables $N_A^{\text{Mis.Id.}}(p_T^{\gamma}) = \frac{N_B(p_T^{\gamma}) \times N_C(p_T^{\gamma})}{N_D(p_T^{\gamma})}$

$$N_{PLJ}(p_T^{\gamma})$$

 $N_A^{\text{Mis.Id.}}(p_T^{\gamma}) = \frac{N_B(p_T^{\gamma})}{N_A^{\text{Mis.Id.}}}$

Uncertainties

Non-zero correlation between PFChIso and $\sigma_{i\eta i\eta}$ Contamination of sideband and PLJ regions with prompt photons

Validity of method ensured by comparing data-driven and simulation-based estimations

Dominated by W+jets, Z+jets, top pair, single top, diboson processes

FCNC t- $\gamma >$ Background estimation

Jets misidentified as electron/muon (jet $\rightarrow e/\mu$)

Modeled using the *Fake Rate* method:

$$FR(p_T^l, \eta^l) = \frac{\# \text{ of events passing tight selection}}{\# \text{ of all events}}$$

- ► Computed in a region dominated by di-jet events with one jet $\rightarrow e/\mu$ misidentification
- Apply weight $w = \frac{FR}{1 FR}$ to CR defined by requiring one loose (not tight) lepton
- Contamination from real leptons subtracted

Validation using γ + jet simulated sample

Compare γ + jet yield from FR method with its direct contribution

Dominated by γ + jets , $W\gamma$ + jets , $Z\gamma$ + jets , $tt\gamma$ + jets, ...

FCNC t- $\gamma >$ Background estimation

Electrons misidentified as photon $(e \rightarrow \gamma) \implies$ *Data-driven corrected simulation*

Modeling

Simulation-based (rec. γ matched to gen. e) Scale Factors applied to correct the simulation

Control Regions $\begin{cases} \mathbf{DY} + \mathbf{jets} \ \mathbf{CR} \implies 2 \text{ tight electrons, } |m_{ee} - m_Z| < 10 \text{ GeV} \\ \mathbf{e} \rightarrow \gamma \ \mathbf{CR} \implies 1 \text{ tight electron, 1 medium photon, } |m_{e\gamma} - m_Z| < 10 \text{ GeV} \end{cases}$ **Scale Factors** defined as $SF(\mathbf{e} \rightarrow \gamma) = \frac{\frac{N_{e\gamma}(Data)}{N_{ee}(Data)}}{\frac{N_{e\gamma}(MC)}{N_{ee}(MC)}}$

Dominated by $\begin{cases} e \text{ channel: } DY + jets, t\bar{t}, \text{ single top } tW \text{-channel, diboson } (ee \text{ decay mode}) \\ \mu \text{ channel: } t\bar{t}, \text{ single top } tW \text{-channel, diboson } (e\mu \text{ decay mode}) \end{cases}$

FCNC $t-\gamma$ \sum Limits

CMS PAS TOP-21-013

Strategy >>>> Multivariate classification based on BDT

- 13 input variables Most important ones $\begin{cases} \mathbf{SR1:} p_{\mathrm{T}}^{\gamma}, \Delta \mathrm{R}(\ell, b\text{-jet}), m_{top}, \Delta \mathrm{R}(top, \gamma) \\ \mathbf{SR2:} m_{iet+\nu}, p_{\mathrm{T}}^{\gamma}, m_{top}, \Delta \mathrm{R}(\ell, b\text{-jet}), \Delta \mathrm{R}(\ell, \gamma) \end{cases}$
- \geq Separate BDTs for *tuy/tcy* channels

Most important uncertainty sources

Non-prompt y, normalizations of Zy + jets and Wy + jets, misidentified y

Limits obtained by combining SR1 and SR2

Combined	Obs. limit	Exp. limit	$\pm 1\sigma$ (exp. limit)	$\pm 2\sigma$ (exp. limit)
$\kappa_{tu\gamma}$	6.2×10^{-3}	6.9×10^{-3}	$(5.9 - 8.4) \times 10^{-3}$	$(5.1 - 10.1) \times 10^{-3}$
$\kappa_{\mathrm{tc}\gamma}$	7.7×10^{-3}	7.8×10^{-3}	$(6.7 - 9.7) \times 10^{-3}$	$(5.7 - 11.5) \times 10^{-3}$
$\mathcal{B}(t \rightarrow u + \gamma)$	0.95×10^{-5}	1.20×10^{-5}	$(0.89 - 1.78) \times 10^{-5}$	$(0.64 - 2.57) \times 10^{-5}$
$\mathcal{B}(t \rightarrow c + \gamma)$	1.51×10^{-5}	1.54×10^{-5}	$(1.13 - 2.37) \times 10^{-5}$	$(0.81 - 3.32) \times 10^{-5}$

Improvement w.r.t. 8 TeV (19.8 fb^{-1}) CMS result 21511.03951

- \checkmark FCNC top decay mode, *e* channel, int. luminosity
- Factor 10/100 improvement in limits on $BR(t \rightarrow u\gamma)/BR(t \rightarrow c\gamma)$

