

– Ulf-G. Meißner, Towards a theory of hadron resonances – HEP conference, Yerevan, Armenia, September 2023 • ○ \triangleleft < \wedge \triangledown [>](#page-1-0)

Contents

- Intro: QCD and excited states
- Lesson 1: What is a resonance?
- Lesson 2: Well separated resonances
- Lesson 3: Coupled channels/thresholds
- Lesson 4: Hadronic molecules
- Lesson 5: A short tale of the two $\Lambda(1405)$ states
- Lesson 6: The width of baryon resonances from EFT
- Short summary & outlook

Master reference: Mai, UGM, Urbach, Phys. Rept. **1001** (2023) 1

Introduction

– Ulf-G. Meißner, Towards a theory of hadron resonances – HEP conference, Yerevan, Armenia, September 2023 • ○ ◇ ◇ △ △ [∧](#page-2-0) ▽ → ▶ ●

QCD Lagrangian ⁴

$$
\mathcal{L}_{\text{QCD}} = -\frac{1}{4} G_{\mu\nu}^{a} G^{\mu\nu,a} + \sum_{f} \bar{q}_{f} (i \not{\!{\!D}} - \mathcal{M}) q_{f} + \dots
$$
\n
$$
D_{\mu} = \partial_{\mu} - ig A_{\mu}^{a} \lambda^{a} / 2
$$
\n
$$
G_{\mu\nu}^{a} = \partial_{\mu} A_{\nu}^{a} - \partial_{\nu} A_{\mu}^{a} - g [A_{\mu}^{b}, A_{\nu}^{c}]
$$
\n
$$
f = (u, d, s, c, b, t)
$$
\n
$$
\mathbf{v}_{\text{M}} = \mathbf{v}_{\text{M}} \mathbf{v}_{\text{M}} = \
$$

• light (u,d,s) and heavy (c,b,t) quark flavors:

 $m_{\text{light}} \ll \Lambda_{\text{QCD}}$ $m_{\text{heavy}} \gg \Lambda_{\text{QCD}}$ $m_u=2.2^{+0.6}_{-0.4}\,$ -0.4 $m_c = 1.28 \pm 0.03$ GeV $m_d = 4.7^{+0.5}_{-0.4}\,$ -0.4 MeV $m_b = 4.18^{+0.04}_{-0.03}\,\rm{GeV}$ $m_s = 96^{+8}_{-4}$ $m_t = 173.1 \pm 0.6$ GeV

– Ulf-G. Meißner, Towards a theory of hadron resonances – HEP conference, Yerevan, Armenia, September 2023 • ○ \triangleleft [<](#page-2-0) \wedge \triangledown [>](#page-4-0)

Limits of QCD

 \bullet light quarks: $\mathcal{L}_{\text{QCD}} = \bar{q}_L \, i \not\!\!D q_L + \bar{q}_R \, i \not\!\!D q_R + \mathcal{O}(m_f/\Lambda_{\text{QCD}})$

- − L and R quarks decouple ⇒ chiral symmetry
- − spontaneous chiral symmetry breaking ⇒ pseudo-Goldstone bosons
- − pertinent EFT ⇒ chiral perturbation theory (CHPT)
- heavy quarks: $\mathcal{L}_{\text{QCD}} = \bar{Q}_f \, iv \cdot D \, Q_f + \mathcal{O}(\Lambda_{\text{QCD}}/m_f)$

− independent of quark spin and flavor

 \Rightarrow SU(2) spin and SU(2) flavor symmetries (HQSS and HQFS)

− pertinent EFT ⇒ heavy quark effective field theory (HQEFT)

• **heavy-light systems:**

- − heavy quarks act as matter fields coupled to light pions
- − combine CHPT and HQEFT

Why excited states?

• The spectrum of QCD is its **least** understood feature

- \rightarrow why only qqq and $\bar{q}q$ states? XYZ states? "exotics"? glueballs?
- \rightarrow important players: **hadronic molecules** \leftrightarrow nuclear physics

 \rightarrow the quark model is much too simple ...

- \rightarrow need insight from EFTs \leftrightarrow symmetries!
- Many recent high-precision data (utilizing e.g. double polarization exp's) \rightarrow ELSA at Bonn, CEBAF at Jefferson Lab, LHCb at CERN, BESIII at BEPCII, GlueX at JLab12, ..., PANDA at FAIR, ...

• Lattice QCD can get ground-states at almost physical pion masses

- → most distinctive feature of excited states: *decays*
- \rightarrow only captured for very few states in lattice QCD
- \rightarrow must explore this (almost complete) *terra incognita*

Lesson 1 What is a resonance?

– Ulf-G. Meißner, Towards a theory of hadron resonances – HEP conference, Yerevan, Armenia, September 2023 • ○ \triangleleft \triangle \wedge \triangledown $>$

What is a resonance?

• *"Not every bump is a resonance and not every resonance is a bump"*

Moorhouse 1960ties

- Resonances have **complex** properties (mass & width, photo-couplings, . . .)
- \hookrightarrow these intrinsic properties do not depend on the experiment or theory (model)
- Resonances correspond to S-matrix poles on unphysical Riemann sheets

• That's all nice in the continuum, but ...

– Ulf-G. Meißner, Towards a theory of hadron resonances – HEP conference, Yerevan, Armenia, September 2023 $\cdot \circ \triangleleft \leq \wedge \nabla \geq$

Pictures of resonances

• Resonances as complex poles on unphsyical sheets:

– Ulf-G. Meißner, Towards a theory of hadron resonances – HEP conference, Yerevan, Armenia, September 2023 $\cdot \circ \vartriangleleft \leq \wedge \nabla$

Resonances in a box and the set of the set of

- Resonances in a box: not eigenstates of the Hamiltonian
	- \Rightarrow volume dependence of the energy spectrum

Lüscher, Wiese, ...

• consider a narrow resonance → *avoided level crossing*

Lesson 2 Well separated resonances

Isolated resonances in a box

• Two identical particles of mass m in a box, no interaction:

$$
E=2\sqrt{m^2+|\vec p\,|^2}\,,\quad \ p_i=\frac{2\pi}{L}n_i\,,\ \ n_i\in\mathbb Z
$$

• turn on interaction \rightarrow scattering phase \rightarrow Lüscher formula: Lüscher 1985

$$
\begin{aligned} &\delta(p)=-\phi(q)\bmod{\pi}\,,\ \ q=\frac{pL}{2\pi} \\ &\phi(q)=-\frac{\pi^{3/2}q}{\mathcal{Z}_{00}(1;q^2)}\,,\ \ \, \mathcal{Z}_{00}(1;q^2)=\frac{1}{\sqrt{4\pi}}\,\sum_{\vec{n}\in\mathbb{Z}^3}\frac{1}{\vec{n}\,^2-q^2} \end{aligned}
$$

• assume resonance with mass $m_R > 2m \rightarrow$ effective range expansion (Breit-Wigner shape):

$$
\tan\left(\delta - \frac{\pi}{2}\right) = \frac{E^2 - m_R^2}{m_R \Gamma_R}
$$
 [not general!]

 \Rightarrow measure the phase shift in the resonance region and fit m_R, Γ_R & extension to moving frames Rummukainen, Gottlieb (1995) + ...

Results for the $\rho(770)$ **-meson I**

- The $\rho(770)$ is a well separated meson resonance in the $\pi\pi$ system
- P-wave $\pi\pi$ scattering, $M_{\pi} = 280 500$ MeV, three different a, three different L, boosts $\vec{d} = 0, 1, 2, 3, 4$, all irreps

Werner, Urbach et al. [ETMC] (2019)

• consistent with other collaborations world-wide

• pioneered in: Feng, Jansen, Renner (2011)

Results for the $\rho(770)$ **-meson II**

• Collect all available results based on dynamical simulations:

- Mass comes out mostly correct
- Width (coupling constant) can still be improved

– Ulf-G. Meißner, Towards a theory of hadron resonances – HEP conference, Yerevan, Armenia, September 2023 • ○ \triangleleft \triangle \wedge \triangledown

Results for the $\Delta(1232)$ 15

Mai, UGM, Urbach, Phys. Rept. **1001** (2023) 1

- The $\Delta(1232)$ is a well separated baryon resonance in the πN system
- $l = 1, I = 3/2 \pi N$ phase shift State-of-the-art (2022):
-

QCDSF-Bonn-Julich coll., see UGM, J. Phys. Conf. Ser. ¨ **295** (2011) 012001

• More work required!

Lesson 3: Coupled channels / thresholds

Extension to coupled channels

- Isolated (well-separated) resonances are the exception
- Coupled channel effects, close-by thresholds: $f_0(980), a_0(980), \Lambda(1405), \ldots$
- various extensions of Lüscher's approach:
	- \star purely quantum mechanical treatment

Feng, He, Liu, Li, ...

 \star non-relativistic EFT (NREFT) Beane, Savage, Bernard, Lage, UGM, Rusetsky, Briceno, Davoudi, Luu, . . . \star finite-volume unitarized CHPT

Döring, UGM, Rusetsky, Oset, ...

- Mostly done in the meson sector, not much for baryons
- • Be aware of methods that can mislead you (must respect symmetries!)

Coupled channel scattering on the lattice ¹⁸

Moir, Peardon, Ryan, Thomas, Wilson, JHEP **1610** (2016) 011

- $D\pi$, $D\eta$, $D_s\bar{K}$ scattering with $I = 1/2$:
- 3 volumes, one a_s , one a_t , $M_\pi \simeq 390$ MeV, various K-matrix type extrapolations

- S-wave pole at (2275.9 ± 0.9) MeV
- close to the D_{π} threshold
- \bullet consistent w/ $\overline{D_0^{\star}}(2300)$ of PDG
- BUT: chiral symmetry ignored... :-(

Coupled channel dynamics 19 and 19 an

Kaiser, Weise, Siegel (1995), Oset, Ramos (1998), Oller, UGM (2001), Kolomeitsev, Lutz (2002), Jido et al. (2003), Guo et al. (2006), . . .

• $D\phi$ bound states: Poles of the T-matrix (potential from CHPT and unitarization)

$$
\mathcal{D}(\mathbf{C}) = \mathbf{V} \mathbf{A}(\mathbf{G}) + \mathbf{V} \mathbf{A}(\mathbf{G}) \mathbf{A}(\mathbf{V}) + \mathbf{V} \mathbf{A}(\mathbf{G}) \mathbf{A}(\mathbf{V}) + \cdots
$$

• Unitarized CHPT as a non-perturbative tool:

$$
T^{-1}(s)=\mathcal{V}^{-1}(s)-G(s)
$$

• $V(s)$: derived from the SU(3) chiral Lagrangian, 6 LECs up to NLO \rightarrow next slide

• $G(s)$: 2-point scalar loop function, regularized w/ a subtraction constant $a(\mu)$

 \bullet T, \mathcal{V}, G : all these are matrices, channel indices suppressed

Coupled channel dynamics cont'd ²⁰

Barnes et al. (2003), van Beveren, Rupp (2003), Kolomeitsev, Lutz (2004), Guo et al. (2006), . . .

• NLO effective chiral Lagrangian for coupled channel dynamics

Guo, Hanhart, Krewald, UGM, Phys. Lett. B **666** (2008) 251

$$
\mathcal{L}_{\text{eff}} = \mathcal{L}^{(1)} + \mathcal{L}^{(2)}
$$
\n
$$
\mathcal{L}^{(1)} = \mathcal{D}_{\mu} D \mathcal{D}^{\mu} D^{\dagger} - M_{D}^{2} D D^{\dagger}, \quad D = (D^{0}, D^{+}, D_{s}^{+})
$$
\n
$$
\mathcal{L}^{(2)} = D \left[-h_{0} \langle \chi_{+} \rangle - h_{1} \chi_{+} + h_{2} \langle u_{\mu} u^{\mu} \rangle - h_{3} u_{\mu} u^{\mu} \right] D
$$
\n
$$
+ \mathcal{D}_{\mu} D \left[h_{4} \langle u^{\mu} u^{\nu} \rangle - h_{5} \{ u^{\mu}, u^{\nu} \} \right] \mathcal{D}_{\nu} D
$$
\nwith $u_{\mu} \sim \partial_{\mu} \phi$, $\chi_{+} \sim \mathcal{M}_{\text{quark}}$, ...

• LECs:

 $\hookrightarrow h_0$ absorbed in masses

 $\rightarrow h_1 = 0.42$ from the D_s -D splitting

 $\hookrightarrow h_{2,3,4,5}$ from a fit to lattice data $(D\pi \to D\pi, D\bar K \to D\bar K,...)$

Liu, Orginos, Guo, Hanhart, UGM, Phys. Rev. D **87** (2013) 014508

²¹ **Fit to lattice data**

Liu, Orginos, Guo, Hanhart, UGM, PRD **87** (2013) 014508

• Fit to lattice data in 5 "simple" channels: no disconnected diagrams

• Prediction: Pole in the $(S, I) = (1, 0)$ channel: 2315^{+18}_{-28} MeV

Experiment:

 $\zeta_{\rm s0}(2317) = (2317.8 \pm 0.5)$ MeV $\;$ PDG2022

– Ulf-G. Meißner, Towards a theory of hadron resonances – HEP conference, Yerevan, Armenia, September 2023 • ○ \triangleleft [<](#page-19-0) \wedge \triangledown [>](#page-21-0)

Finite volume formalism ²²

• Goal: postdict the finite volume (FV) energy levels for $I = 1/2$ and compare with the recent LQCD results from Moir et al. using the already fixed LECs \rightarrow parameter-free insights into the $D_0^{\star}(2300)$

• In a FV, momenta are quantized: $\vec{q} =$ 2π L $\vec{n} ~,~~ \vec{n} \in \mathbb{Z}^3$

$$
\Rightarrow \textsf{Loop function } G(s) \text{ gets modified: } \int d^3\vec{q} \rightarrow \frac{1}{L^3} \sum_{\vec{q}}
$$

$$
\tilde{G}(s,L)=G(s)=\lim_{\Lambda\to\infty}\left[\frac{1}{L^3}\sum_{\vec{n}}^{|\vec{q}|<\Lambda}I(\vec{q}\,)-\int_0^\Lambda\frac{q^2dq}{2\pi^2}I(\vec{q}\,)\right]
$$

Döring, UGM, Rusetsky, Oset, Eur. Phys. J. A47 (2011) 139

• FV energy levels from the poles of $\tilde{T}(s, L)$:

$$
\tilde T^{-1}(s,L)=V^{-1}(s)-\tilde G(s,L)
$$

What about the $D_0^{\star}(2300)$ **?**

• Results for $I = 1/2 D\phi$ scattering

Albaladejo, Fernandez-Soler, Guo, Nieves, Phys. Lett. B **767** (2017) 465

• this is NOT a fit!

• all LECs taken from the earlier study of Liu et al. (discussed before)

– Ulf-G. Meißner, Towards a theory of hadron resonances – HEP conference, Yerevan, Armenia, September 2023 • ○ \triangleleft \triangle \wedge \triangledown \geq

What about the $D_0^{\star}(2300)$ **? – cont'd**

• reveals a two-pole scenario! [cf. $\Lambda(1405)$]

- understood from group theory
	- $\bar{3} \otimes 8 = \bar{3} \oplus 6$ attractive \oplus 15
- this was seen earlier in various calc's

Kolomeitsev, Lutz (2004), F. Guo, Shen, Chiang, Ping, Zou (2006), F. Guo, Hanhart, UGM (2009), Z. Guo, UGM, Yao (2009)

- Again: important role of **chiral symmetry**
- Easy lattice QCD test:

sextet pole becomes a bound state for $M_{\phi} > 575$ MeV in the SU(3) limit Du et al., Phys.Rev. D **98** (2018) 094018

Albaladejo, Fernandez-Soler, Guo, Nieves (2017)

²⁵ **Two-pole scenario in the heavy-light sector**

• Two states in various $I = 1/2$ states in the heavy meson sector $(M, \Gamma/2)$

Lattice QCD: $M_{B_{s0}^\star} = 5711(13)(19)$ MeV , $\,\,M_{B_{s1}} = 5750(17)(19)$ MeV Lang et al., Phys.Lett. B **750** (2015) 17

 \rightarrow but is there further experimental support for this?

Amplitude Analysis of $B\to D\pi\pi$

– Ulf-G. Meißner, Towards a theory of hadron resonances – HEP conference, Yerevan, Armenia, September 2023 • ○ ◇ ◇ △ △ [∧](#page-25-0) ▽ [>](#page-26-0) ▶ ●

Data for $B \to D \pi \pi$

• Recent high precision results for $B \to D \pi \pi$ from LHCb

Aaji et al. [LHCb], Phys. Rev. D **94** (2016) 072001, . . .

• Spectroscopic information in the angular moments $(D\pi$ FSI):

Chiral Lagrangian for B → D **transitions** ²⁸

Savage, Wise, Phys. Rev. D39 (1989) 3346

• Consider $\bar{B}\to D$ transition with the emission of two light pseudoscalars (pions)

- \hookrightarrow chiral symmetry puts constraints on one of the two pions
- \hookrightarrow the other pion moves fast and does not participate in the final-state interactions
- Chiral effective Lagrangian:

$$
\mathcal{L}_{\text{eff}} = \bar{B} \big[c_1 \left(u_\mu t M + M t u_\mu \right) + c_2 \left(u_\mu M + M u_\mu \right) t \n+ c_3 t \left(u_\mu M + M u_\mu \right) + c_4 \left(u_\mu \langle M t \rangle + M \langle u_\mu t \rangle \right) \n+ c_5 t \langle M u_\mu \rangle + c_6 \langle (M u_\mu + u_\mu M) t \rangle \big] \partial^\mu D^\dagger
$$

with

$$
\bar{B}=(B^-,\bar{B}^0,\bar{B}^0_s)~,~~D=(D^0,D^+,D_s^+)
$$

 M is the matter field for the fast-moving pion

 $t = uHu$ is a spurion field for Cabbibo-allowed decays

 \rightarrow only some combinations of the LECs c_i appear

 $H =$ $\sqrt{ }$ $\overline{ }$ 0 0 0 1 0 0 0 0 0 $\sum_{i=1}^{n}$ \mathbb{R}

Theory of $B \to D \pi \pi$

Du, Albadajedo, Fernandez-Soler, Guo, Hanhart, UGM, Nieves, Phys. Rev. **D98** (2018) 094018 • $B^- \to D^+\pi^-\pi^-$ contains coupled-channel $D\pi$ FSI

• consider S, P, D waves: $\mathcal{A}(B^-\to D^+\pi^-\pi^-)=\mathcal{A}_0(s)+\mathcal{A}_1(s)+\mathcal{A}_2(s)$

 \rightarrow P-wave: $D^{\star}, D^{\star}(2680)$; D-wave: $D_2(2460)$ as by LHCb

- \rightarrow S-wave: use coupled channel $(D\pi, D\eta, D_sK)$ amplitudes with all parameters fixed before
- \rightarrow only two parameters in the S-wave (one combination of the LECs c_i and one subtraction constant in the G_{ij})

$$
\mathcal{A}_0(s) \propto E_{\pi} \left[2 + G_{D\pi}(s) \left(\frac{5}{3} T_{11}^{1/2}(s) + \frac{1}{3} T_{11}^{3/2}(s) \right) \right] \n+ \frac{1}{3} E_{\eta} G_{D\eta}(s) T_{21}^{1/2}(s) + \sqrt{\frac{2}{3}} E_{\bar{K}} G_{D_s \bar{K}}(s) T_{31}^{1/2}(s) \n+ C E_{\eta} G_{D\eta}(s) T_{21}^{1/2}(s)
$$

Theory of $B \to D \pi \pi$ continued 30

Du, Albadajedo, Fernandez-Soler, Guo, Hanhart, UGM, Nieves, Yao, Phys. Rev. **D98** (2018) 094018

• More appropriate combinations of the angular moments:

• The S-wave $D\pi$ can be very well described using pre-fixed amplitudes

• Fast variation in [2.4,2.5] GeV in $\langle P_{13}\rangle$: cusps at the $D\eta$ and $D_s\bar{K}$ thresholds \hookrightarrow should be tested experimentally

A closer look at the S–wave 31 and 31 a

• LHCb provides anchor points, where the strength and the phase of the S-wave were extracted from the data and connected by cubic spline

 t od in our amplitude predoctorales para la formación de la formació • Higher mass pole at 2.46 GeV clearly amplifies the cusps predicted in our amplitude
- Ulf-G. Meißner, Towards a theory of hadron resonances – HEP conference, Yerevan, Armenia, September 2023 $\cdot \circ \vartriangleleft \times \wedge \nabla \geq \triangleright \bullet$

Theory of $B^0_s\to \bar{D}^0 K^-\pi^+$

Du, Albadajedo, Fernandez-Soler, Guo, Hanhart, UGM, Nieves, Yao, Phys. Rev. **D98** (2018) 094018

- \bullet LHCb has also data on $B^0_s \rightarrow \bar{D}^0 K^- \pi^+,$ but less precise
- Same formalism as before, one different combination of the LECs c_i
- same resonances in the P- and D-wave as LHCb \rightarrow one parameter fit!

 \Rightarrow these data are also well described

 \Rightarrow better data for $\langle P_{13} \rangle$ would be welcome

⇒ even more channels, see Du, Guo, UGM, Phys. Rev. D **99** (2019) 114002

Where is the lowest charm-strange meson?

Du, Guo, Hanhart, Kubis, UGM, Phys. Rev. Lett. 126 (2021) 192001 [2012.04599]

- Precise analysis of the LHCb data on $B^- \to D^+\pi^-\pi^-$ using UChPT and Khuri-Treiman eq's (3-body unit.) \rightarrow spares Aaji et al. [LHCb], Phys. Rev. D 94 (2016) 072001
- Breit-Wigner description not appropriate for the S-wave but UChPT and the dispersive analysis are! Gardner, UGM, Phys.Rev.D 65 (2002) 094004
- First determination of the $D\pi$ phase shift
- The lowest charm-strange meson is located at:

 $\left(2105^{+6}_{-8} - i \, 102^{+10}_{-11} \right)$ MeV

• Recently confirmed by Lattice QCD! Cheung et al. [HadSpec], JHEP 02 (2021) 100 [2008.06432]

- Ulf-G. Meißner, Towards a theory of hadron resonances - HEP conference, Yerevan, Armenia, September 2023

Lesson 4: Hadronic molecules

– Ulf-G. Meißner, Towards a theory of hadron resonances – HEP conference, Yerevan, Armenia, September 2023 • ○ \triangleleft \triangle \wedge \triangledown $>$

What are hadronic molecules ? **What are hadronic molecules** ?

- QCD offers yet another set of bound states, first seen in **nuclear physics** ,→ **hadronic molecules** (made of 2 or 3 hadrons)
- Bound states of two hadrons in an S-wave very close a 2-particle threshold or between two close-by thresholds \Rightarrow particular decay patterns
- weak binding entails a large spatial extension
- the classical example:

 \star the deuteron

$$
m_p+m_n=938.27+939.57\,\rm{MeV},
$$

$$
m_d=m_p+m_n-E_B\rightarrow E_B=2.22\,\text{MeV}
$$

 $r_d = 2.14$ fm $[r_p = 0.85$ fm]

• other examples: $\Lambda(1405)$, $f_0(980)$, $X(3872)$, ...

 \Rightarrow how to distinguish these from compact multi-quark states ?

Compositeness criterion Compositeness criterion

Weinberg (1965), Morgan (1991), Tornquist (1995), Baru et al. (2003), . . .

• Wave fct. of a bound state with a compact & a two-hadron component in S-wave:

$$
|\Psi\rangle = \begin{pmatrix} \sqrt{Z}|\psi_0\rangle \\ \chi(\vec{k})|h_1h_2\rangle \end{pmatrix} \qquad \text{compact comp. w/ probability }\sqrt{Z} \\ \text{two-hadron comp. w/ relative w.f. } \chi(\vec{k})
$$

• consider the scattering amplitude and compare with the ERE:

$$
\left| a = -2 \frac{1-Z}{2-Z} \left(\frac{1}{\gamma} \right) + \mathcal{O} \left(\frac{1}{\beta} \right) \, , \, \, r = - \frac{Z}{1-Z} \left(\frac{1}{\gamma} \right) + \mathcal{O} \left(\frac{1}{\beta} \right) \right| \, \, \, \gamma = \sqrt{2 \mu E_B}
$$

 a = scattering length, γ/E_B = binding momentum/energy (**shallow** b.s.)

 μ = reduced mass of the two-particle system, β = range of forces

$$
\Rightarrow \text{pure molecule } (Z = 0): \text{ maximal scattering length } a = -1/\gamma
$$
\nnatural effective range $r = \mathcal{O}(1/\beta)$

$$
\Rightarrow \text{compact state } (Z = 1): \text{ the scattering length is } a = -\mathcal{O}(1/\beta)
$$

effective range diverges, $r \rightarrow -\infty$

³⁷ **The deuteron**

Weinberg, Phys. Rev. **137** (1965) B672

• The deuteron: shallow neutron-proton bound state ($E_B \ll m_d$):

$$
E_B = 2.22 \,\text{MeV} \to \gamma = 45.7 \,\text{MeV} = 0.23 \,\text{fm}^{-1}
$$

• range of forces set by the one-pion-exchange:

$$
1/\beta \sim 1/M_\pi \simeq 1.4\,{\rm fm}
$$

• set $Z = 0$ in the Weinberg formula:

$$
a_{\rm mol}=-(4.3\pm1.4)\,{\rm fm}
$$

• this is consistent with the data:

$$
a=-5.419(7)\,{\rm fm}\;,\;r=1.764(8)\,{\rm fm}
$$

One begins to suspect that Nature is doing her best to keep us from learning whether the "elementary" particles deserve that title. (Weinberg, 1965)

Extension to resonances 38 and 39 and

Baru et al. (2003), Braaten, Lu (2007), Aceti, Oset (2012), Guo, Oller (2016), . . .

• Still assume closeness to a two-particle threshold:

$$
T(E) = \frac{g^2/2}{E-E_r+(g^2/2)(ik+\gamma)+i\Gamma_0/2}
$$

with $E=k^2/(2\mu)$, $\;\;\Gamma_0$ accounts for the inelasticities of other channels

• leads to very different **line shapes** for compact and molecular states:

 k^2 term dominates \rightarrow symmetric $\qquad \qquad g$ 2 term dominates \rightarrow asymmetric/cusp

• extension to instable particles/additional poles have also been worked out

Some candidates 39

• Prominent examples in the light quark sector: $f_0(980), a_0(980)$, the two $\Lambda(1405), \ldots$

 \leftrightarrow see next lesson

• Prominent examples in the $c\bar{c}$ spectrum:

 $X(3872), Z_c(3900), Y(4260), Y(4660), \ldots$

- Prominent examples of heavy-light mesons: $D_{s0}^\star(2317),\;\;D_{s1}(2460), D_{s1}^\star(2860),\,\ldots$
- Prominent examples in the $b\bar{b}$ spectrum: $\bm{Z_{b}(10610)},\bm{Z_{b}(10650)}$
- and some examples of heavy baryons:

 $\Lambda_c(2595)$, $\Lambda_c(2940)$, $P_c(4312)$, $P_c(4557)$, ...

• rich phenomenology, discuss just one apect

,→much more details in: Guo, Hanhart, UGM, Wang, Zhao, Zou, Rev. Mod. Phys. **90** (2018) 015004

Misconceptions on hadroproduction 40

Albaladejo, Guo, Hanhart, UGM, Nieves, Nogga, Yang, Chin.Phys. C **41** (2017) 121001

• It is often claimed that molecules due to their large spatial extent can not be produced in high-energy collisions, say at the $LHC \rightarrow$ this is wrong!

Bignamini, Grinstein, Piccinini, Polosa, Sabelli, Phys. Rev. Lett. **103** (2009) 162001

$$
\begin{aligned} \sigma(\bar pp\to X) &\sim \left| \int d^3\mathbf{k} \langle X| D^0 \bar D^{*0}(\mathbf{k}) \rangle \langle D^0 \bar D^{*0}(\mathbf{k}) |\bar pp \rangle \right|^2 \\ &\simeq \left| \int_{\mathcal{R}} d^3\mathbf{k} \langle X| D^0 \bar D^{*0}(\mathbf{k}) \rangle \langle D^0 \bar D^{*0}(\mathbf{k}) |\bar pp \rangle \right|^2 \\ &\leq \int_{\mathcal{R}} d^3\mathbf{k} \left| \Psi(\mathbf{k}) \right|^2 \int_{\mathcal{R}} d^3\mathbf{k} \left| \langle D^0 \bar D^{*0}(\mathbf{k}) |\bar pp \rangle \right|^2 \\ &\leq \int_{\mathcal{R}} d^3\mathbf{k} \left| \langle D^0 \bar D^{*0}(\mathbf{k}) |\bar pp \rangle \right|^2 \end{aligned}
$$

- The result depends crucially on the value of $\mathcal R$ which specifies the region where the bound state wave function " $\Psi(k)$ is significantly different from zero"
- assumption by Bignamini et al: $\mathcal{R} \simeq 35$ MeV of the order of γ

 $\rightarrow \sigma(\bar{p}p \rightarrow X) \simeq 0.07$ nb way smaller than experiment

- \hookrightarrow the X(3872) can not be a molecule
- \hookrightarrow so what goes wrong?

Misconceptions on hadroproduction cont'd ⁴¹

Albaladejo, Guo, Hanhart, UGM, Nieves, Nogga, Yang, Chin.Phys. C **41** (2017) 121001

- Consider the relevant integral for the deuteron: $\bar{\Psi}_{\lambda}(\mathcal{R}) \equiv \int_{\mathcal{R}} d^3\mathbf{k} \, \Psi_{\lambda}(\mathbf{k})$
- the binding momentum is $\gamma \simeq 45$ MeV, use that for the support \mathcal{R} :

 \hookrightarrow the integral is by far not saturated for $\mathcal{R} = \gamma$, need $\mathcal{R} \simeq 2M_{\pi} \simeq 300$ MeV

• Similar misconception: Molecules can not be produced at large p_T \rightarrow true for nuclei but not quarkonia and alike (q versus \bar{q})

Hadroproduction of the X(3872) ⁴²

• Nice example of a process involving short-distance physics

 \hookrightarrow still, factorization is at work, best seen using EFT

Artoisenet, Braaten, Phys. Rev. D **81** (2010) 114018

 \hookrightarrow consider production at the Tevatron and at LHC

$$
\sigma[X] = \frac{1}{4m_Hm_{H^\prime}}g^2|G|^2\bigg(\frac{d\sigma[HH^\prime(k)]}{dk}\bigg)_{\text{MC}}\frac{4\pi^2\mu}{k^2} \nonumber\\ G(E,\Lambda) = -\frac{\mu}{\pi^2}\bigg[\sqrt{2\pi}\,\frac{\Lambda}{4} + \sqrt{\pi}\,\gamma D\left(\frac{\sqrt{2}\gamma}{\Lambda}\right) - \frac{\pi}{2}\,\gamma\,e^{2\gamma^2/\Lambda^2}\bigg]
$$

$$
\left(\begin{array}{c}\n\overbrace{p} \\
\hline\n\end{array}\right)\n\left(\begin{array}{c}\nH & \overbrace{p} \\
\hline\n\end{array}\right)
$$

• typical results (using PYTHIA/HERWIG):

Guo, UGM, Wang, Yang, Eur. Phys. J. C **74** (2014) 3063

 \Rightarrow not very precise, but perfectly consistent with the data!

 \Rightarrow also predictions for the charm-strange mesons

Guo, UGM, Wang, Yang, JHEP **1405** (2014) 138

Lesson 5: A short tale of the two Λ(1405) states

The first exotic hadron – the story of the two $\Lambda(1405)$

- Quark model: uds excitation with $J^P = \frac{1}{2}$ 2 − CLAS (2014) a few hundred MeV above the $\Lambda(1116)$ $m=1405.1^{+1.3}_{-1.0}\,$ $_{-1.0}^{+1.5}$ MeV , $\Gamma = 50.5 \pm 2.0 \,\mathrm{MeV}~[{\rm PDG} \, 2015]$
- Prediction as early as 1959 by Dalitz and Tuan: Resonance between the coupled $\pi\Sigma$ and $\bar{K}N$ channels Dalitz, Tuan, Phys. Rev. Lett. **2** (1959) 425; J.K. Kim, PRL **14** (1965) 29
- Clearly seen in $K^-p\rightarrow \Sigma 3\pi$ reactions at 4.2 GeV at CERN Hemingway, Nucl.Phys. B **253** (1985) 742
- An enigma: Too low in mass for the quark model, but well described in unitarized chiral perturbation theory: $\phi B \to \phi B$

⁴⁵ **The two-pole scenario**

• Detailed analysis found **two** poles in the complex energy plane

Oller, UGM, Phys. Lett. B **500** (2001) 263

• Group theory:

$$
8 \otimes 8 = \underbrace{1 \oplus 8_s \oplus 8_a}_{\text{binding at LO}} \oplus 10 \oplus \overline{10} \oplus 27
$$

- Follow the pole movement from the SU(3) limit to the physical masses: Jido, Oller, Oset, Ramos, UGM, Nucl. Phys. A **725** (2003) 181
- Verified by various groups world-wide
- However: scattering and kaonic atom data alone do not lead to a unique solution (two poles, but spread in the complex plane)
- • Photoproduction to the rescue: $\gamma p \to K^+ \Sigma \pi$ CLAS, Phys. Rev. C 87, 035206 (2013)

Present status of the two-pole scenario

• Two poles from scattering plus CLAS data (one well, the other not-so-well fixed):

for details, see Mai, Eur. Phys. J. ST **230** (2021) 1593 [arXiv:2010.00056 [nucl-th]]

Figures courtesy Maxim Mai

→ PDG 2016: **http://pdg.lbl.gov/2015/reviews/rpp2015-rev-lam-1405-pole-struct.pdf**

POLE STRUCTURE OF THE $\Lambda(1405)$ REGION Written November 2015 by Ulf-G. Meißner and Tetsuo Hyodo

⁴⁷ **Status in the Review of Particle Physics**

• Two excited A states listed in the 2020 RPP edition:

P. A. Zyla *et al.* [Particle Data Group], PTEP **2020** (2020) 083C01

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

 $J^P = \frac{1}{2}$ Status: $**$

OMITTED FROM SUMMARY TABLE See the related review on "Pole Structure of the A(1405) Region."

• a new two-star resonance at 1380 MeV

- still not in the summary table
- there are more such two-pole states!

Hyodo, UGM

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

$$
\Lambda(1405)\,\,1/2^-
$$

 $I(J^{P}) = 0(\frac{1}{2}^{-})$ Status: ****

In the 1998 Note on the A(1405) in PDG 98, R.H. Dalitz discussed the S-shaped cusp behavior of the intensity at the N - \overline{K} threshold observed in THOMAS 73 and HEMINGWAY 85. He commented that this behavior "is characteristic of S-wave coupling; the other below threshold hyperon, the $\Sigma(1385)$, has no such threshold distortion because its $N\overline{K}$ coupling is P-wave. For $\Lambda(1405)$ this asymmetry is the sole direct evidence that $J^P = 1/2$."

A recent measurement by the CLAS collaboration, MORIYA 14, definitively established the long-assumed $J^P = 1/2^-$ spin-parity assignment of the Λ (1405). The experiment produced the $\Lambda(1405)$ spin-polarized in the photoproduction process $\gamma p \rightarrow$ K^+ Λ (1405) and measured the decay of the Λ (1405)(polarized) \rightarrow Σ^+ (polarized) π^- . The observed isotropic decay of $\Lambda(1405)$ is consistent with spin $J = 1/2$. The polarization transfer to the Σ^+ (polarized) direction revealed negative parity, and thus established $J^P = 1/2^-$.

See the related review(s):

- this is a fascinating phenomenon intimately tied to molecular structures
- for a review, see UGM, *Symmetry* **12** (2020) 981
- • Two As: recenty confirmed by lattice QCD Bulava et al., 2307.10413 [hep-lat]

Lesson 5: The width of baryon resonances from EFT

EFT including the ∆ ⁴⁹

- Task: calculate the width of the ∆ at two-loop order [one-loop too simple] Gegelia, UGM, Siemens, Yao, Phys. Lett. B763 (2016) 1
- Consider the effective chiral Lagrangian of pions, nucleons and deltas:

$$
\mathcal{L}_{\pi N}^{(1)} = \bar{\Psi}_{N} \left\{ i\mathcal{D} - m + \frac{1}{2}g\psi\gamma^{5} \right\} \Psi_{N}
$$
\n
$$
\mathcal{L}_{\pi\Delta}^{(1)} = -\bar{\Psi}_{\mu}^{i}\xi_{ij}^{\frac{3}{2}} \left\{ \left(i\mathcal{D}^{jk} - m_{\Delta}\delta^{jk} \right) g^{\mu\nu} - i\left(\gamma^{\mu}D^{\nu,jk} + \gamma^{\nu}D^{\mu,jk} \right) + i\gamma^{\mu}\mathcal{D}^{jk}\gamma^{\nu} + m_{\Delta}\delta^{jk}\gamma^{\mu}\gamma^{\nu} + g_{1\frac{1}{2}}\psi^{jk}\gamma_{5}g^{\mu\nu} + g_{2\frac{1}{2}}(\gamma^{\mu}u^{\nu,jk} + u^{\nu,jk}\gamma^{\mu})\gamma_{5}
$$
\n
$$
+ g_{3\frac{1}{2}}\gamma^{\mu}\psi^{jk}\gamma_{5}\gamma^{\nu} \right\} \xi_{kl}^{\frac{3}{2}} \Psi_{\nu}^{l}
$$
\n
$$
\mathcal{L}_{\pi N\Delta}^{(1)} = h\,\bar{\Psi}_{\mu}^{i}\xi_{ij}^{\frac{3}{2}}\Theta^{\mu\alpha}(z_{1})\,\omega_{\alpha}^{j}\Psi_{N} + \text{h.c.}
$$
\n
$$
\mathcal{L}_{\pi N\Delta}^{(2)} = \bar{\Psi}_{\mu}^{i}\xi_{ij}^{\frac{3}{2}}\Theta^{\mu\alpha}(z_{2}) \left[i\,b_{3}\omega_{\alpha\beta}^{j}\gamma^{\beta} + i\,b_{8\frac{1}{m}}\omega_{\alpha\beta}^{j}i\,D^{\beta} \right] \Psi_{N} + \text{h.c.} + \dots
$$
\n
$$
\mathcal{L}_{\pi N\Delta}^{(3)} = \bar{\Psi}_{\mu}^{i}\xi_{ij}^{\frac{3}{2}}\Theta^{\mu\nu}(z_{3}) \left[f_{1\frac{1}{m}} [D_{\nu}, \omega_{\alpha\beta}^{j}] \gamma^{\alpha}i\,D^{\beta} - f_{2\frac{1}{2m^{2}} } [D_{\nu}, \omega_{\alpha\beta}^{j}] \{ D^{\alpha}, D^{\beta} \} + f_{4}\omega_{\nu}^{j}\langle\chi_{+}\rangle + f_{5}[D_{\nu}, i\chi
$$

- Power counting rests on $m_{\Delta} m_N$ being a small quantity
- • So many LECs, how can one possibly make a prediction?

⁵⁰ **Complex-mass renormalization**

- Method originally introduced for W , Z -physics, later transported to chiral EFT Stuart (1990), Denner, Dittmaier et al. (1999), Actis, Passarino (2007) Djukanovic, Gegelia, Keller, Scherer, Phys. Lett. B680 (2009) 235
- Evaluate the ∆ self-energy on the complex pole:

$$
z - m_{\Delta}^0 - \Sigma_1(z^2) - z \Sigma_6(z^2) \equiv z - m_{\Delta}^0 - \Sigma(z) = 0 \text{ with } \boxed{z = m_{\Delta} - i \frac{\Gamma_{\Delta}}{2}}
$$

- Self-energy diagrams:
- \rightarrow one-loop easy
- \rightarrow two-loops: use Cutkovsky rules for instable particles \rightarrow width $\sim |A(\Delta \rightarrow N\pi)|^2$
	- Veltman, Physica 29 (1963) 186

– Ulf-G. Meißner, Towards a theory of hadron resonances – HEP conference, Yerevan, Armenia, September 2023 • ○ \triangleleft \triangle \wedge \triangledown

Calculation of the width 51

- Remarkable reduction of parameters: $h_A = h - (b_3 \Delta_{23} + b_8 \, \Delta_{123}) - (f_1 \Delta_{23} + f_2 \, \Delta_{123}) \, \Delta_{123} + 2 (2 f_4 - f_5) M_\pi^2$ $\Delta_{23} = m_N - m_\Delta, \Delta_{123} = (M_\pi^2 + m_N^2 - m_\Delta^2)/(2 m_N)$
- Very simple formula for the decay width $\Delta \to N\pi$:

 $\Gamma(\Delta\to N\pi)=(53.91\,h_\not^2)$ $\frac{2}{A}\!+\!0.87g_1^2$ ${2 \over 1} h^2_A$ $\frac{2}{A}\!-\!3.31g_1h_{A}^2$ $\mathrm{_A^{2}-0.99}\,h_{A}^{4})~\mathrm{MeV}$

⁵² **EFT including the Roper-resonance**

• Task: calculate the width of the Roper $N^*(1440)$ at two-loop order

Gegelia, UGM, Yao, Phys. Lett. B760 (2016) 736

- Remarkable feature: $\Gamma(R \to N\pi) \simeq \Gamma(R \to N\pi\pi)$
- Consider the effective chiral Lagrangian of pions, nucleons and deltas: Borasoy et al., Phys. Lett. B641 (2006) 294, Djukanovic et al., Phys. Lett. B690 (2010) 123 Long, van Kolck, Nucl. Phys. A870-871 (2011) 72

$$
\mathcal{L}_{\text{eff}} = \mathcal{L}_{\pi\pi} + \mathcal{L}_{\pi N} + \mathcal{L}_{\pi\Delta} + \mathcal{L}_{\pi R} + \mathcal{L}_{\pi N\Delta} + \mathcal{L}_{\pi NR} + \mathcal{L}_{\pi\Delta R}
$$
\n
$$
\mathcal{L}_{\pi R}^{(1)} = \bar{\Psi}_R \{ i\mathbf{D} - m_R + \frac{1}{2} g_R \psi \gamma^5 \} \Psi_R
$$
\n
$$
\mathcal{L}_{\pi R}^{(2)} = \bar{\Psi}_R \{ c_1^R \langle \chi_+ \rangle \} \Psi_R + \dots
$$
\n
$$
\mathcal{L}_{\pi NR}^{(1)} = \bar{\Psi}_R \{ \frac{1}{2} g_{\pi NR} \gamma^\mu \gamma_5 u_\mu \} \Psi_N + \text{h.c.}
$$
\n
$$
\mathcal{L}_{\pi \Delta R}^{(1)} = h_R \bar{\Psi}_\mu^i \xi_{ij}^{\frac{3}{2}} \Theta^{\mu \alpha}(\tilde{z}) \omega_\alpha^j \Psi_R + \text{h.c.}
$$

⁵³ **EFT including the Roper-resonance cont'd**

• The power counting is complicated, but can be set up around the complex pole:

$$
m_R - m_N \sim \varepsilon \ , \ \ m_R - m_\Delta \sim \varepsilon^2 \ , \ \ m_\Delta - m_N \sim \varepsilon^2 \ , \ \ M_\pi \sim \varepsilon^2
$$

• Calculate the two-loop self-energy and the corresponding decay amplitudes

Calculation of the width Existence of the series of the width $\frac{54}{54}$

• A lengthy calculation leads to:

$$
\Gamma(R \to N\pi) = 550(58) g_{\pi NR}^2 \text{ MeV}
$$

\n
$$
\Gamma(R \to N\pi\pi) = \left(1.49(0.58) g_A^2 g_{\pi NR}^2 - 2.76(1.07) g_A g_{\pi NR}^2 g_R + 1.48(0.58) g_{\pi NR}^2 g_R^2 + 2.96(0.94) g_A g_{\pi NR} h h_R - 3.79(1.37) g_{\pi NR} g_R h h_R + 9.93(5.45) h^2 h_R^2 \right) \text{MeV}
$$

- Fix $g_{\pi NR}$ from the PDG value: $g_{\pi NR} = \pm (0.47 \pm 0.05)$ PDG 2016
- Maximal mixing assumption: $g_R = g_A$, $h_R = h$

Beane, van Kolck, J. Phys. G31 (2005) 921

 \hookrightarrow can make a prediction for the two-pion decay width of the Roper

$$
\big|\,\Gamma(R\to N\pi\pi) = (41\pm22_{\rm LECs}\pm17_{\rm h.o.})~{\rm MeV}^-
$$

- consistent with the PDG value of (67 ± 10) MeV
- need an improved determination of the LECs g_R and h_R

Summary & Outlook

Summary & outlook: Take home messages

The QCD spectrum is more than a collection of quark model states

Structure formation in QCD ties nuclear and hadron physics together

Lattice QCD is making progress in addressing complex resonance properties (must respect symmetries)

EFTs are of utmost importance in pushing this program forward

Forget Breit-Wigner if close to threshold / coupled-channels

SPARES

– Ulf-G. Meißner, Towards a theory of hadron resonances – HEP conference, Yerevan, Armenia, September 2023 • ○ △ △ [∧](#page-56-0) ▽ [>](#page-57-0) ▶ ●

• In principle ab initio calcs of non–pert. QCD on a discretized space–time

 \hookrightarrow already some successes *but only now entering the chiral regime*

• Extrapolations neccessary:

LATTICE QCD

 \star finite volume $V=L^3\times L_t\to\infty$

 \star finite lattice spacing $a \to 0$

 \star chiral extrapolation $m_q\rightarrow m_q^{\text{phys}}$

• All these effects can be treated in suitably tailored EFTs

• how are resonances defined in such a finite space-time?

⇒ consider finite volume effects for **low-lying hadron resonances**

Some formalism 59

• Exact three-body unitarity via Khuri-Treiman equations: Khuri, Treiman (1960)

 \hookrightarrow write ${\cal A}_{+--}(B^-\to D^+\pi^-\pi^-)$ and ${\cal A}_{00-}(B^-\to D^0\pi^0\pi^-)$ as [reconstruction theorem]

$$
\mathcal{A}_{+--}(s,t,u) = \mathcal{F}_0^{1/2}(s) + \frac{\kappa(s)}{4} z_s \mathcal{F}_1^{1/2}(s) + \frac{\kappa(s)^2}{16} (3z_s^2 - 1) \mathcal{F}_2^{1/2}(s) + (t \leftrightarrow s)
$$

\n
$$
\mathcal{A}_{00-}(s,t,u) = -\frac{1}{\sqrt{2}} \mathcal{F}_0^{1/2}(s) - \frac{\kappa(s)}{4\sqrt{2}} z_s \mathcal{F}_1^{1/2}(s) - \frac{\kappa(s)^2}{16\sqrt{2}} (3z_s^2 - 1) \mathcal{F}_2^{1/2}(s) + \frac{\kappa_u(u)}{4} z_u \mathcal{F}_1^{1}(u)
$$

\n
$$
z_s = \cos \theta_s = \frac{s(t-u) - \Delta}{\kappa(s)}, z_u = \cos \theta_u = \frac{t-s}{\kappa_u(u)}, \quad \Delta = (M_B^2 - M_\pi^2)(M_D^2 - M_\pi^2)
$$

\n
$$
\kappa(s) = \lambda^{1/2}(s, M_D^2, M_\pi^2) \lambda^{1/2}(s, M_B^2, M_\pi^2), \kappa_u(u) = \lambda^{1/2}(u, M_B^2, M_D^2) \sqrt{1 - 4M_\pi^2/u}
$$

\n
$$
\mathcal{F}_\ell^I
$$
: angular momentum $\ell \le 2$, isospin $I < 3/2$

• Solve via the Omnès ansatz:

$$
\mathcal{F}_{\ell}^I(s) = \Omega_{\ell}^I(s) \bigg\{Q_{\ell}^I(s) + \frac{s^n}{\pi} \int_{s_{\rm th}}^{\infty} \frac{ds'}{s'^n} \frac{\sin \delta_{\ell}^I(s') \hat{\mathcal{F}}_{\ell}^I(s')}{|\Omega_{\ell}^I(s')|(s'-s)} \bigg\}\,,
$$

 $\boldsymbol{Q}_{\boldsymbol{\ell}}^{I}(s)$ = polynom of degree zero (one subtraction suffices)

$$
\Omega^I_\ell(s) = \exp\left\{\frac{s}{\pi}\int_{s_{\rm th}}^\infty ds' \frac{\delta^I_\ell(s')}{s'(s'-s)}\right\}
$$

– Ulf-G. Meißner, Towards a theory of hadron resonances – HEP conference, Yerevan, Armenia, September 2023 • ○ ◇ ◇ △ △ [∧](#page-58-0) ▽ [>](#page-59-0) ▶ ●

