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Hadronic input in the studies of the BSM physics

Examples:

Direct and indirect CP violation in K → 2π decays
(lattice: RBC and UKQCD collaborations)
CP violation in K → 3π decays, and so on. . .

In QCD, the structure of hadrons and their interactions at low energies cannot be
studied in perturbation theory → QCD on the lattice
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“Scattering” in a finite volume

The scattering observables cannot be directly extracted from the amplitudes calculated
on the lattice!

a

a

L

a

(Periodic) boundary conditions imposed

The spatial size of the box, L, is finite

Assume the temporal size Lt ≫ L, Lt → ∞
Three-momenta are quantized p =

2π

L
n , n ∈ Z3

Discrete energy levels: En+1 − En = O(L−2)

How does one extract the scattering observables:
phase shifts, cross sections, . . . from the measured quantities

on the lattice?
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EFT meets lattice

Ψ
in

Ψ
out

R

L

When R ≪ L, well-separated hadrons can be formed

Natural scale separation

Since p ∼ 1/L and R ∼ 1/m, then p ≪ m: non-relativistic EFT

Polarization effects, caused by creation/annihilation of the particles, are
exponentially small and can be neglected

Scale separation: QCD (in a finite volume) ⇒ EFT (in a finite volume)
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Non-relativistic EFT: essentials

Propagator:

1

m2 − p2
=

1

2w(p)(w(p)− p0 − iε)︸ ︷︷ ︸
particle

+
1

2w(p)(w(p) + p0 − iε)︸ ︷︷ ︸
anti−particle

The vertices in the Lagrangian conserve particle number:

L = ϕ†(i∂t − w)(2w)ϕ+
C0

4
ϕ†ϕ†ϕϕ+

D0

36
ϕ†ϕ†ϕ†ϕϕϕ+ · · ·︸ ︷︷ ︸

C0,D0 encode short-range physics

Only bubble diagrams: T = + + · · ·

K-matrix
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Matching of the EFT couplings

Matching the EFT couplings in the two-body sector to the effective range
expansion parameters:

K−1(p) = p cot δ(p) = −1

a
+

1

2
rp2 + O(p4) , C0 ↔ a , . . .

Finite volume: p =
2π

L
n, n ∈ Z3, poles of the T -matrix ⇒ spectrum

The Lüscher equation (in the absence of partial-wave mixing) (Lüscher, 1991):

p cot δ(p) =
2√
πL

Z00(1; q
2
0)

↪→ measuring energy levels, one extracts phase shift at the same energy

NREFT serves as a bridge between finite and infinite volume
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The Lellouch-Lüscher formula (Lellouch & Lüscher, 2001)

Final-state interactions lead to an irregular L-dependence of the matrix element

K π

π
+ + · · ·

K

π

π

The non-relativistic Lagrangian

L = ϕ†(i∂t − w)(2w)ϕ+
C0

4
ϕ†ϕ†ϕϕ+ · · ·+ K †(i∂t − wK )(2wK )K

+ g(K †ϕϕ+ h.c.)

Calculate the decay matrix element in a finite and in the infinite volume, extract g
Matrix elements are related through

|⟨n|HW |K ⟩L| = Φ2(L)︸ ︷︷ ︸
depends on phase shift

|⟨ππ; out|HW |K ⟩∞|
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Why three particles on the lattice?

Three-pion decays of K , η, ω; a1(1260) → ρπ → 3π; a1(1420) → f0(980)π → 3π

Decays of exotica: X (3872), Y (4260), . . .

Roper resonance: πN and ππN final states

Few-body physics: reactions with the light nuclei

Lattice vs. infinite volume: observables

Infinite volume: Three-particle bound states; Elastic scattering; Rearrangement
reactions; Breakup; Three-particle resonances; Decay matrix elements (complex):
e.g., ⟨πππ|HW |K ⟩
Finite volume: Two- and three-particle energy levels; Matrix elements between
eigenstates (real)

How does one connect these two sets? EFT serves as a bridge!
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Three-particle quantization condition

Is the three-particle spectrum determined solely in terms of the S-matrix?

K. Polejaeva and AR, 2012: Yes!

Three different but equivalent formulations of the three-particle quantization
condition are available

RFT (Relativistic Field Theory): Hansen & Sharpe, 2014

NREFT (Non-Relativistic Effective Field Theory): Hammer, Pang & AR, 2017

FVU (Finite-Volume Unitarity): Mai & Döring, 2017

Enables one to extract scattering observables in the three-body sector from the
measured finite-volume spectrum
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Particle-dimer picture

Dimer: an alternative description of an infinite bubble sum; dummy field in the
path integral

Mathematically equivalent to the standard treatment – not an approximation

+ + · · · →dimer :

Particle-dimer Lagrangian:

L = ϕ†(i(v · ∂)− wv )(2wv )ϕ+ σT †T +

(
T †[ f0

2
ϕϕ+ · · ·

]
+ h.c.

)
Matching: f0, . . . ↔ C0, . . . ↔ a, r , . . . , σ = ±1.

vµ is a unit vector in the direction of the total four-momentum of the
three-particle system
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Particle-dimer picture in the three-particle sector

→

D0
H0

The particle-dimer Lagrangian in the three-particle sector

L3 = h0T
†Tϕ†ϕ+ · · ·

Matching: h0, . . . ↔ D0, . . .

Terms with higher derivatives, higher dimer spin and orbital momentum should be
added
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The scattering equation in the infinite volume

= + + +

Bethe-Salpeter equation

M(p, q) = Z (p, q) + 8π

∫
d3k⊥

(2π)32wv (k)
θ(Λ2 +m2 − (vk)2)Z (p, k)τ(K − k)M(k , q)

τ(P) =
2
√
P2

k∗ cot δ(k∗)− ik∗ k∗ =

√
P2

4
−m2

Z (p, q) =
1

2wv (K − p − q)(wv (p) + wv (q) + wv (K − p − q)− (vK )− iε)
+ H̃0 + · · ·
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Relativistic invariant QC in the three-body sector
(F. Müller, J.-Y. Pang, AR and J.-J. Wu, JHEP 02 (2022) 158)

ML(p, q) = Z (p, q) +
8π

L3

∑
k

θ(Λ2 +m2 − (vk)2)Z (p, k)
τL(K − k)

2w(k)
ML(k, q)

τL(P) =
2
√
K 2

k∗ cot δ(k∗)− 2√
πLγ

ZP
00(1; q

2
0)

, q0 =
k∗L

2π

Z (p, q) =
1

2wv (K − p − q)(wv (p) + wv (q) + wv (K − p − q)− (vK )− iε
+ H̃0 + · · ·

Quantization condition:

detA = 0 , Apq = L32w(p)δ3pq(8πτL(K − p))−1 − Z (p, q)
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Quantization condition: essentials

Two-body interactions as an input: k∗ cot δ(k∗) fitted in the two-particle sector

Extracting short-range quantities encoded in the three-body couplings H̃0, . . .
– should be fitted to the three-particle energies

Finally, solve the equations in the infinite volume to arrive at the S-matrix
elements!
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Three-particle resonances
(M. Garofalo, M. Mai, F. Romero-Lopez, AR and C. Urbach, arXiv:2211.05605)

L =
1

2

∑
i=0,1

(∂µφi∂µφi +m2
i φiφi + 2λi (φiφi )

2) +
g

2
(φ†

1φ
3
0 + h.c.)

g = 17.81
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Three-particle decays
(F. Müller and AR, JHEP 03 (2021) 152, F. Müller, J.-Y. Pang, AR and J.-J.Wu, arXiv:2211.10126)

a) Decays through the weak or electromagnetic interactions; isospin-breaking decays:
pole on the real axis

Example: K → 3π

b) Decays through strong interactions, the pole moves into the complex plane
Example: N(1440) → ππN

Final-state interactions lead to the irregular volume-dependence in the matrix
element

π
+ · · ·

K π

π
π +

K π

π

+
K

π

π

π

An analog of the LL formula in the three-particle sector?
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The 3-particle LL factor

⟨π(k1)π(k2)π(k3); out|HW |K ⟩∞ = Φ3({k})L3/2⟨n|HW |K ⟩L
The factor Φ3({k}) depends on the ππ, πππ interactions and on L, but
not on the couplings that describe the short-range part of the K → 3π amplitude!

The derivative couplings emerge at higher orders; decay amplitudes into different
final states mix. The three-particle LL factor becomes a matrix

Apart from the two-body scattering parameters, the LL factor depends on
the three-body force, which should be determined prior to calculating the

matrix element. Is this dependence significant numerically?
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Role of the three-body force in the LL factor
(J.-Y. Pang, R. Bubna, F. Müller, AR and J.-J. Wu, in preparation)
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2× 2 LL factor, corresponding to K+ → π+π+π− and K+ → π0π0π+ decays
Sensitive to the values of a0, a2, very little dependence on the three-body force!
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Conclusions & outlook

In the analysis of lattice data, EFT can be used to systematically relate the finite-
and infinite-volume observables. This facilitates the extraction of scattering
observables from lattice data

The crucial point: decoupling of short- and long-range physics

The quantization condition and an analog of the LL formula in the three-particle
sector is derived

Decays of K+ into three pions: LL factor worked out explicitly to lowest order,
Very little dependence on the three-body input!

Outlook

Long-range forces in a finite volume: one-pion exchange, Coulomb force
Nuclear physics on the lattice
The Roper resonance
Boxed exotica
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