

Lattice QCD meets effective field theories: two- and three-particle decays

Akaki Rusetsky, University of Bonn

Conference on High Energy Physics, 11-14 September 2023, Yerevan, Armenia

amma അധനമായെ കെന്നുടായവ പാരാമണങ്ങള്ള SHOTA RUSTAVELI NATIONAL SCIENCE FOUNDATION

- Introduction
- Scale separation and the choice of the EFT
- Two-body sector: Lüscher equation, two-body decays
- Three (and more) particles
- Conclusions, outlook

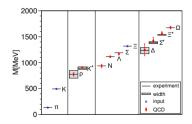
Hadronic input in the studies of the BSM physics

Examples:

• Direct and indirect *CP* violation in $K \rightarrow 2\pi$ decays (lattice: RBC and UKQCD collaborations)

• CP violation in $K
ightarrow 3\pi$ decays, and so on. . .

In QCD, the structure of hadrons and their interactions at low energies cannot be studied in perturbation theory \rightarrow QCD on the lattice

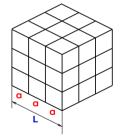


Meson and baryon spectrum in QCD, S. Dürr et al., Science 322 (2008) 1224

"Scattering" in a finite volume

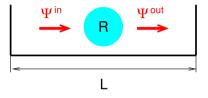
The scattering observables cannot be directly extracted from the amplitudes calculated on the lattice!

- (Periodic) boundary conditions imposed
- The spatial size of the box, *L*, is finite
- Assume the temporal size $L_t \gg L$, $L_t \rightarrow \infty$
- Three-momenta are quantized $\mathbf{p} = \frac{2\pi}{I} \mathbf{n}$, $\mathbf{n} \in \mathbb{Z}^3$
- Discrete energy levels: $E_{n+1} E_n = O(L^{-2})$



How does one extract the scattering observables: phase shifts, cross sections, . . . from the measured quantities on the lattice?

EFT meets lattice



- When $R \ll L$, well-separated hadrons can be formed
- Natural scale separation
- Since $p \sim 1/L$ and $R \sim 1/m$, then $p \ll m$: non-relativistic EFT
 - Polarization effects, caused by creation/annihilation of the particles, are exponentially small and can be neglected

Scale separation: QCD (in a finite volume) \Rightarrow EFT (in a finite volume)

Non-relativistic EFT: essentials

• Propagator:

$$\frac{1}{m^2 - p^2} = \underbrace{\frac{1}{\frac{2w(\mathbf{p})(w(\mathbf{p}) - p^0 - i\varepsilon)}{particle}}}_{particle} + \underbrace{\frac{1}{\frac{2w(\mathbf{p})(w(\mathbf{p}) + p^0 - i\varepsilon)}{anti-particle}}}_{anti-particle}$$

• The vertices in the Lagrangian conserve particle number:

$$\mathscr{L} = \phi^{\dagger}(i\partial_{t} - w)(2w)\phi + \frac{C_{0}}{4}\phi^{\dagger}\phi^{\dagger}\phi\phi + \frac{D_{0}}{36}\phi^{\dagger}\phi^{\dagger}\phi^{\dagger}\phi\phi\phi + \cdots$$

$$C_{0,D_{0} \text{ encode short-range physics}}$$
• Only bubble diagrams:
$$T = + + \cdots$$

K-matrix

Matching of the EFT couplings

• Matching the EFT couplings in the two-body sector to the effective range expansion parameters:

$$\mathcal{K}^{-1}(p) = p \cot \delta(p) = -\frac{1}{a} + \frac{1}{2} r p^2 + O(p^4), \qquad C_0 \leftrightarrow a, \dots$$

- Finite volume: $\mathbf{p} = \frac{2\pi}{I} \mathbf{n}, \ \mathbf{n} \in \mathbb{Z}^3$, poles of the *T*-matrix \Rightarrow spectrum
- The Lüscher equation (in the absence of partial-wave mixing) (Lüscher, 1991):

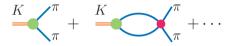
$$p\cot\delta(p)=\frac{2}{\sqrt{\pi}L}Z_{00}(1;q_0^2)$$

 \hookrightarrow measuring energy levels, one extracts phase shift at the same energy

NREFT serves as a bridge between finite and infinite volume

The Lellouch-Lüscher formula (Lellouch & Lüscher, 2001)

• Final-state interactions lead to an irregular L-dependence of the matrix element



• The non-relativistic Lagrangian

$$\begin{aligned} \mathscr{L} &= \phi^{\dagger}(i\partial_{t} - w)(2w)\phi + \frac{C_{0}}{4}\phi^{\dagger}\phi^{\dagger}\phi\phi + \dots + K^{\dagger}(i\partial_{t} - w_{K})(2w_{K})K \\ &+ g(K^{\dagger}\phi\phi + \text{h.c.}) \end{aligned}$$

- Calculate the decay matrix element in a finite and in the infinite volume, extract g
- Matrix elements are related through

$$|\langle n|H_W|K\rangle_L| = \underbrace{\Phi_2(L)}_{\text{depends on phase shift}} |\langle \pi\pi; out|H_W|K\rangle_{\infty}|$$

Why three particles on the lattice?

- Three-pion decays of K, η, ω ; $a_1(1260) \rightarrow \rho \pi \rightarrow 3\pi$; $a_1(1420) \rightarrow f_0(980)\pi \rightarrow 3\pi$
- Decays of exotica: X(3872), Y(4260), ...
- Roper resonance: πN and $\pi \pi N$ final states
- Few-body physics: reactions with the light nuclei

Lattice vs. infinite volume: observables

- Infinite volume: Three-particle bound states; Elastic scattering; Rearrangement reactions; Breakup; Three-particle resonances; Decay matrix elements (complex): e.g., $\langle \pi \pi \pi | H_W | K \rangle$
- Finite volume: Two- and three-particle energy levels; Matrix elements between eigenstates (real)

How does one connect these two sets? EFT serves as a bridge!

Three-particle quantization condition

• Is the three-particle spectrum determined solely in terms of the S-matrix?

K. Polejaeva and AR, 2012: Yes!

- Three different but equivalent formulations of the three-particle quantization condition are available
 - RFT (Relativistic Field Theory): Hansen & Sharpe, 2014
 - NREFT (Non-Relativistic Effective Field Theory): Hammer, Pang & AR, 2017
 - FVU (Finite-Volume Unitarity): Mai & Döring, 2017
- Enables one to extract scattering observables in the three-body sector from the measured finite-volume spectrum

Particle-dimer picture

- Dimer: an alternative description of an infinite bubble sum; dummy field in the path integral
- Mathematically equivalent to the standard treatment not an approximation

dimer :
$$X$$
 + X + \cdots \rightarrow

• Particle-dimer Lagrangian:

$$\mathscr{L} = \phi^{\dagger}(i(\mathbf{v}\cdot\partial) - w_{\mathbf{v}})(2w_{\mathbf{v}})\phi + \sigma T^{\dagger}T + \left(T^{\dagger}\left[\frac{f_{0}}{2}\phi\phi + \cdots\right] + h.c.\right)$$

- Matching: $f_0, \ldots \leftrightarrow C_0, \ldots \leftrightarrow a, r, \ldots, \quad \sigma = \pm 1.$
- v^{μ} is a unit vector in the direction of the total four-momentum of the three-particle system

Particle-dimer picture in the three-particle sector

• The particle-dimer Lagrangian in the three-particle sector

$$\mathscr{L}_{3} = h_{0} T^{\dagger} T \phi^{\dagger} \phi + \cdots$$

- Matching: $h_0, \ldots \leftrightarrow D_0, \ldots$
- Terms with higher derivatives, higher dimer spin and orbital momentum should be added

The scattering equation in the infinite volume

Bethe-Salpeter equation

$$\mathcal{M}(p,q)=Z(p,q)+8\pi\intrac{d^3k_\perp}{(2\pi)^32w_v(k)}\, heta(\Lambda^2+m^2-(vk)^2)Z(p,k) au(K-k)\mathcal{M}(k,q)$$

$$\tau(P) = \frac{2\sqrt{P^2}}{k^* \cot \delta(k^*) - ik^*} \qquad k^* = \sqrt{\frac{P^2}{4} - m^2}$$

$$Z(p,q) = \frac{1}{2w_{\nu}(K-p-q)(w_{\nu}(p)+w_{\nu}(q)+w_{\nu}(K-p-q)-(\nu K)-i\varepsilon)} + \tilde{H}_{0} + \cdots$$

Relativistic invariant QC in the three-body sector

(F. Müller, J.-Y. Pang, AR and J.-J. Wu, JHEP 02 (2022) 158)

$$\mathcal{M}_L(p,q)=Z(p,q)+rac{8\pi}{L^3}\sum_{\mathbf{k}} heta(\Lambda^2+m^2-(\mathbf{v}k)^2)Z(p,k)rac{ au_L(K-k)}{2w(\mathbf{k})}\,\mathcal{M}_L(k,q)$$

$$\tau_L(P) = \frac{2\sqrt{K^2}}{k^* \cot \delta(k^*) - \frac{2}{\sqrt{\pi}L\gamma} Z_{00}^{\mathbf{p}}(1; q_0^2)}, \qquad q_0 = \frac{k^*L}{2\pi}$$

$$Z(p,q) = \frac{1}{2w_{\nu}(K-p-q)(w_{\nu}(p)+w_{\nu}(q)+w_{\nu}(K-p-q)-(\nu K)-i\varepsilon)} + H_0 + \cdots$$

• Quantization condition:

_ .

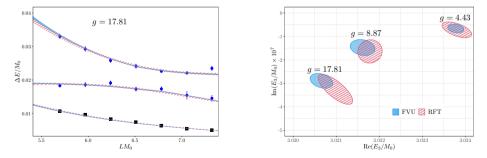
$$\det \mathscr{A} = 0, \qquad \mathscr{A}_{pq} = L^3 2w(\mathbf{p})\delta^3_{\mathbf{pq}}(8\pi\tau_L(K-p))^{-1} - Z(p,q)$$

- Two-body interactions as an input: $k^* \cot \delta(k^*)$ fitted in the two-particle sector
- Extracting short-range quantities encoded in the three-body couplings \tilde{H}_0, \ldots should be fitted to the three-particle energies
- Finally, solve the equations in the infinite volume to arrive at the *S*-matrix elements!

Three-particle resonances

(M. Garofalo, M. Mai, F. Romero-Lopez, AR and C. Urbach, arXiv:2211.05605)

$$\mathscr{L} = \frac{1}{2} \sum_{i=0,1} (\partial_{\mu} \varphi_i \partial_{\mu} \varphi_i + m_i^2 \varphi_i \varphi_i + 2\lambda_i (\varphi_i \varphi_i)^2) + \frac{g}{2} (\varphi_1^{\dagger} \varphi_0^3 + \text{h.c.})$$



Three-particle decays

(F. Müller and AR, JHEP 03 (2021) 152, F. Müller, J.-Y. Pang, AR and J.-J.Wu, arXiv:2211.10126)

- a) Decays through the weak or electromagnetic interactions; isospin-breaking decays: pole on the real axis Example: $K \rightarrow 3\pi$
- b) Decays through strong interactions, the pole moves into the complex plane Example: $N(1440) \rightarrow \pi\pi N$
- Final-state interactions lead to the irregular volume-dependence in the matrix element

$$K - \pi \pi + K - \pi \pi + K - \pi \pi + \cdots$$

An analog of the LL formula in the three-particle sector?

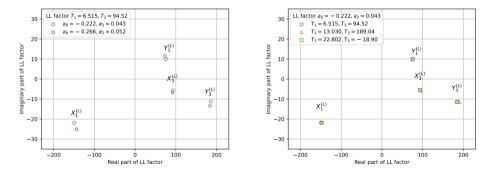
 $\langle \pi(k_1)\pi(k_2)\pi(k_3); out|H_W|K\rangle_{\infty} = \Phi_3(\{k\})L^{3/2}\langle n|H_W|K\rangle_L$

- The factor Φ₃({k}) depends on the ππ, πππ interactions and on L, but not on the couplings that describe the short-range part of the K → 3π amplitude!
- The derivative couplings emerge at higher orders; decay amplitudes into different final states mix. The three-particle LL factor becomes a matrix

Apart from the two-body scattering parameters, the LL factor depends on the three-body force, which should be determined prior to calculating the matrix element. Is this dependence significant numerically?

Role of the three-body force in the LL factor

(J.-Y. Pang, R. Bubna, F. Müller, AR and J.-J. Wu, in preparation)



• 2 × 2 LL factor, corresponding to $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ and $K^+ \rightarrow \pi^0 \pi^0 \pi^+$ decays • Sensitive to the values of a_0, a_2 , very little dependence on the three-body force!

Conclusions & outlook

- In the analysis of lattice data, EFT can be used to systematically relate the finiteand infinite-volume observables. This facilitates the extraction of scattering observables from lattice data
- The crucial point: decoupling of short- and long-range physics
- The quantization condition and an analog of the LL formula in the three-particle sector is derived
- Decays of K^+ into three pions: LL factor worked out explicitly to lowest order, Very little dependence on the three-body input!
- Outlook
 - Long-range forces in a finite volume: one-pion exchange, Coulomb force
 - Nuclear physics on the lattice
 - The Roper resonance
 - Boxed exotica