

Overview on Hadron Spectroscopy at COMPASS

Philipp Haas for the COMPASS Collaboration

12.09.2023 - CHEP 2023

Motivation

- The Constituent Quark Model predicts mesons as $|q \bar{q} \rangle$ states
- QCD allows meson configurations beyond $|q\bar{q}\rangle$ so-called exotics:
 - Hybrids $|q\bar{q}g\rangle$, Glueballs $|gg\rangle$, Multiquarks $|qq\bar{q}q\rangle$

Motivation

- The Constituent Quark Model predicts mesons as $|q \overline{q} \rangle$ states
- QCD allows meson configurations beyond $|q\bar{q}\rangle$ so-called exotics:
 - Hybrids $|q\bar{q}g\rangle$, Glueballs $|gg\rangle$, Multiquarks $|qq\bar{q}q\rangle$

- Types of exotic mesons:
 - Spin-exotic states $-J^{PC}$ not possible for $|q\bar{q}\rangle$: $J^{PC} = 0^{--}$, even⁺⁻, odd⁻⁺
 - Supernumerary states
 - Flavor-exotic states: |Q|, $|I_3|$, |S|, |C|, |B| > 1

- Lattice QCD predicts the lightest exotic in 1^{-+}
 - Single pole around 1.6 GeV/c^2
 - Dominant decay to $b_1\pi$

- Lattice QCD predicts the lightest exotic in 1^{-+}
 - Single pole around 1.6 GeV/c^2
 - Dominant decay to $b_1\pi$
- 1^{-+} signals at 1.4 GeV/ c^2 and 1.6 GeV/ c^2
 - Seen at COMPASS and other experiments

- Lattice QCD predicts the lightest exotic in 1^{-+}
 - Single pole around 1.6 GeV/c^2
 - Dominant decay to $b_1\pi$
- 1^{-+} signals at 1.4 GeV/ c^2 and 1.6 GeV/ c^2
 - Seen at COMPASS and other experiments
- JPAC found single pole $\pi_1(1600)$ sufficient for $\eta^{(\prime)}\pi$ COMPASS data

- Lattice QCD predicts the lightest exotic in 1^{-+}
 - Single pole around 1.6 GeV/c^2
 - Dominant decay to $b_1\pi$
- 1^{-+} signals at 1.4 GeV/ c^2 and 1.6 GeV/ c^2
 - Seen at COMPASS and other experiments
- JPAC found single pole $\pi_1(1600)$ sufficient for $\eta^{(\prime)}\pi$ COMPASS data
- BNL claimed $\pi_1(2015)$ in $\omega\pi^-\pi^0$ and $f_1\pi$

Experimental Setup

- Located at CERN SPS
- 190 GeV/c negative hadron beam
- Non-strange light meson spectroscopy $\pi^{-}p$ scattering
- Strange-meson spectroscopy K⁻p scattering

Light-Meson Spectroscopy at COMPASS

Analyzed channels:

- $\pi^{-}\pi^{-}\pi^{+}/\pi^{-}\pi^{0}\pi^{0}$
- $\eta\pi^-/\eta'\pi^-$
- $K^-\pi^-\pi^+$
- $\omega\pi^-\pi^0$

Additional channels under study:

$K_{s}K^{-}$	Search for $a_6(2450)$
$K_s K_s \pi^-$	Investigate nature of $a_1(1420)$
$f_1\pi^-$	Search for π_1 states
$K_s\pi^-$	Strange meson spectroscopy
$\Lambda ar{p}$	strange-meson spectroscopy

Analysis of $\omega(782)\pi^{-}\pi^{0}$

- Overlapping and interfering X^- states
 - No characteristic peaks in spectrum above $1.5 \text{ GeV}/c^2$
- Disentangling the different contributions with partial-wave analysis
- Partial-wave decomposition: Split total intensity into different contributions

Phase-Space Variables

- Total of 8 phase-space variables
 - Denoted as set of variables τ

 m_{ω}

 m_{m}^{PDG}

 $\times 10^3$

40

30

20

10

Entries / 2 MeV/c²

2008

- Fit - Signal

Background

• Exited meson X^- with quantum numbers 0^-0^+

- Exited meson X^- with quantum numbers 0^-0^+
- Isobar model: $X^- \rightarrow \omega \rho(770)$
 - Unstable intermediate state/isobar $\rho(770)$

- Exited meson X^- with quantum numbers 0^-0^+
- Isobar model: $X^- \rightarrow \omega \rho(770)$
 - Unstable intermediate state/isobar $\rho(770)$
 - LS = P1 coupling between ω and $\rho(770)$

- Exited meson X^- with quantum numbers 0^-0^+
- Isobar model: $X^- \rightarrow \omega \rho(770)$
 - Unstable intermediate state/isobar $\rho(770)$
 - LS = P1 coupling between ω and $\rho(770)$
- $\rho(770) \rightarrow \pi^- \pi^0$
 - Second LS = P1 coupling
- $i = 0^{-}0^{+}[\rho(770)P] \omega P1$

- Exited meson X^- with quantum numbers $J^P M^{\epsilon}$
- Isobar model: $X^- \rightarrow \omega \xi^-$
 - Unstable intermediate state/isobar ξ^-
 - LS coupling between ω and ξ^-
- $\xi^- \to \pi^- \pi^0$
 - Second LS coupling
- $i = J^P M^{\epsilon} [\xi l] \omega LS$

- Further decay channels of X^- :
 - $\pi^{0}\xi^{-}, \pi^{-}\xi^{0}$
- Both decays have the same amplitude
 - \Rightarrow Coherently sum over both isospin configurations $\pi^0\xi^-$, $\pi^-\xi^0$
- $i = J^P M^{\epsilon} [\xi l]$ bachelor *LS*
 - ξ either decays to $\omega\pi$ or $\pi\pi$

- Coherent superposition of partial-waves:
 - $i = J^P M^{\epsilon} [\xi l]$ bachelor *LS*

$$I(m_X, t', \tau) = \left| \sum_i \mathcal{T}_i(m_X, t') \psi_i(m_X, \tau) \right|^2$$

with:

 m_X : mass of the $\omega(782)\pi^-\pi^0$ system t': squared four-momentum transfer τ : phase-space variables of the final state

- Coherent superposition of partial-waves:
 - $i = J^P M^{\epsilon} [\xi l]$ bachelor *LS*

$$I(m_X, t', \tau) = \left| \sum_i \mathcal{T}_i(m_X, t') \psi_i(m_X, \tau) \right|^2$$

• Decay amplitude $\psi_i(m_X, \tau)$: calculated using the isobar model

- Coherent superposition of partial-waves:
 - $i = J^P M^{\epsilon} [\xi l]$ bachelor *LS*

$$I(m_X, t', \tau) = \left| \sum_i \mathcal{T}_i(m_X, t') \psi_i(m_X, \tau) \right|^2$$

- Decay amplitude $\psi_i(m_X, \tau)$: calculated using the isobar model
- Transition amplitude $\mathcal{T}_i(m_X, t')$:
 - $\Rightarrow \mathcal{T}_i(m_X, t')$ contains production, propagation, and coupling of *i*
 - No assumptions about the resonant content of X^-
 - \Rightarrow Extract $\mathcal{T}_i(m_X, t')$ by independent maximum-likelihood fits of $I(\tau)$ in bins of (m_X, t')

Partial-Wave Decomposition – Wave Set

• In principle: Infinite number of partial-waves *i*

$$I(m_X, t', \tau) = \left| \sum_i \mathcal{T}_i(m_X, t') \psi_i(m_X, \tau) \right|^2$$

Partial-Wave Decomposition – Wave Set

• In principle: Infinite number of partial-waves *i*

$$I(m_X, t', \tau) = \left| \sum_i \mathcal{T}_i(m_X, t') \psi_i(m_X, \tau) \right|^2$$

- Pool of 893 waves based on systematic constraints
 - $\xi \rightarrow \pi \pi : \rho(770), \rho(1450), \rho_3(1690)$
 - $\xi \to \omega \pi$: $b_1(1235)$, $\rho(1450)$, $\rho_3(1690)$
 - $J \le 8, M \le 2, L \le 8$

Partial-Wave Decomposition – Wave Set

• In principle: Infinite number of partial-waves i

$$I(m_X, t', \tau) = \left| \sum_i \mathcal{T}_i(m_X, t') \psi_i(m_X, \tau) \right|$$

- Pool of 893 waves based on systematic constraints
 - $\xi \rightarrow \pi \pi \colon \rho(770), \rho(1450), \rho_3(1690)$
 - $\xi \rightarrow \omega \pi : b_1(1235), \rho(1450), \rho_3(1690)$
 - $J \leq 8, M \leq 2, L \leq 8$
- Regularization-based model-selection
 - Unique wave set for each (m_X, t') cell
 - Cauchy regularization:

$$\ln \mathcal{L}_{\text{reg}} = -\ln \left[1 + \frac{\mathcal{T}_i^2}{\Gamma^2} \right]$$

Philipp Haas - CHEP 2023

Recap
$$J^{PC} = 1^{-+}$$

- Spin-exotic quantum numbers
- Lattice-QCD predictions:
 - Lightest hybrid meson at around 1.6 GeV/ c^2
 - Dominant decay to $b_1(1235)\pi$
- COMPASS has found $\pi_1(1600)$ in 3π , $\eta\pi$, $\eta'\pi$

Strange-Meson Spectroscopy in $K^-\pi^-\pi^+$

- 720k diffractive $K^-\pi^-\pi^+$ events
- 16 established states, 9 need further confirmation
- Missing states from quark-model prediction
- Many measurements performed 30+ years ago

Philipp Haas - CHEP 2023

Strange Mesons with $J^P = 0^-$

- K(1460) peak at about 1.4 GeV/ c^2
 - Leakage effects in the final-state PID below 1.5 ${\rm GeV}/c^2$
 - \Rightarrow fixed Breit-Wigner resonance
- K(1630) peak at about 1.7 GeV/ c^2
 - 8.3σ statistical significance
- K(1830) peak at about 2.0 GeV/ c^2
 - 5.4 σ statistical significance

Strange Mesons with $J^P = 0^-$

- Quark model predicts 2 exited 0⁻ states
- Indications for 3 states in one analysis
 - \Rightarrow Supernumerary state K(1630)
 - ⇒ Possible candidate for exotic strange meson; other explanations possible

Strange Mesons

• Most comprehensive analysis of $K^-\pi^-\pi^+$

• 11 states extracted from COMPASS data

Conclusion

$\omega\pi^{-}\pi^{0}$:

- Resonance-like signals for many well-established states visible
 - Clear peak for $\pi_1(1600) \rightarrow b_1(1235)\pi$
- Possible signals for further states
 - $a_3(1975), a_6(2450), \pi_1 \rightarrow \rho(770) \omega$

 $K^-\pi^-\pi^+$:

- Most comprehensive analysis of this final state
- Possible exotic strange-meson: Supernumerary state in $J^P = 0^-$

Outlook

COMPASS:

- Resonance-model fit of $\omega \pi^- \pi^0$ to extract resonance parameters
 - First studies yield promising results
- Upcoming analyses of many final states:
 - $f_1\pi^-, K_SK^-, K_SK_S\pi^-, K_S\pi^-, \Lambda \bar{p}$

AMBER:

- Proposal for high-precision strange-meson spectroscopy
 - $10 20 \times 10^6 K^- \pi^- \pi^+$ events with a high-intensity beam
 - Additional PID for extended momentum coverage

Backup

Philipp Haas - CHEP 2023

Mesons in QCD

- Many short-lived, exited states with similar masses
- ⇒ All possible intermediate states X for one final-state configuration interfere
- \Rightarrow PWA necessary to determine contributions of certain X

Kinematic Distributions - $\omega(782)\pi^{-}\pi^{0}$

• Total of 720,000 selected $\pi^-\pi^0\omega(782)$ events

Kinematic Distributions - $\omega(782)\pi^{-}\pi^{0}$

• Total of 720,000 selected $\pi^-\pi^0\omega(782)$ events

t' Distribution - $\omega(782)\pi^{-}\pi^{0}$

Dalitz Plots - $\omega(782)\pi^{-}\pi^{0}$

 $\omega(782)$ Selection - $\omega(782)\pi^{-}\pi^{0}$

• Reconstruction of $\omega(782)$ from $\pi^{-}\pi^{0}\pi^{+}$ decay

Philipp Haas - CHEP 2023

 $\omega(782)$ Selection - $\omega(782)\pi^{-}\pi^{0}$

- Reconstruction of $\omega(782)$ from $\pi^{-}\pi^{0}\pi^{+}$ decay
- Select events with exactly one $\pi^-\pi^0\pi^+$ combination within $\pm 3\sigma_\omega$ around the fitted m_ω

$$I(m_X, t', \tau) = \left| \sum_i \mathcal{T}_i(m_X, t') \psi_i(m_X, \tau) \right|^2$$

- Decay amplitude $\psi_i(m_X, \tau)$: calculated using the isobar model
- $\mathcal{T}_i(m_X, t')$ contains production, propagation, and coupling of
 - No assumptions about the resonant content of X^-
- Extract $\mathcal{T}_i(m_X, t')$ by independent maximum-likelihood fits of $I(\tau)$ in bins of (m_X, t')
 - Approximate \mathcal{T}_i by fitting step-wise constant functions in bins of (m_X, t')

$\omega(782)$ Decay in PWA Model

• Factorisation of the decay amplitude

$$\psi_i = \Sigma_{\lambda_\omega} \psi_{i, X \to \omega \pi \pi}^{\lambda_\omega} \psi_{\omega \to 3\pi}^{\lambda_\omega}$$

• $\psi_{i,X\to\omega\pi\pi}^{\lambda_{\omega}}$ calculated with isobar model

•
$$\psi_{\omega \to 3\pi}^{\lambda_{\omega}} = \mathcal{D}(m_{\omega})D_0^{\lambda_{\omega}}|p^+ \times p^-|$$

- + $\mathcal{D}(m_\omega)$ is the Breit-Wigner (BW) of ω
- $D_0^{\lambda_\omega}$ and $|p^+ \times p^-|$ describe the orientation of ω and its *P*-wave Dalitz plot, respectively
 - Both are independent of m_ω

$\omega(782)$ Decay in PWA Model

- Problem: m_{ω} is only measured with limited resolution
 - \Rightarrow Intensity level: Convolution of BW with resolution function => m_ω follows Voigt distribution
 - \Rightarrow Convolution of the full intensity is not feasible
 - Solution: Neglect self-interference of ω as only one $\pi^-\pi^0\pi^+$ combination has a large amplitude

$$\Rightarrow \mathcal{D}(m_{\omega})$$
 factorises out of the intensity:

- $I(m_X, t', \tau, m_{\omega}) = I(m_X, t', \tau) |\mathcal{D}(m_{\omega})|^2$
- $\Rightarrow |\mathcal{D}(m_{\omega})|^2$ is modelled as Voigt distribution with parameters from fitted data

Isospin Symmetrization

• $X^- \rightarrow \xi^- \pi^0$ and $X^- \rightarrow \xi^0 \pi^-$ have the same amplitude (modulo a sign due to isospin Clebsch-Gordons)

 $\Rightarrow \mathcal{T}_i(m_X, t')$ is the same and we model the total decay amplitude as

$$\psi_i = +\frac{1}{2}\psi_{i,\xi^0\pi^-} - \frac{1}{2}\psi_{i,\xi^-\pi^0}$$

Philipp Haas - CHEP 2023

Wave Selection

- Method used for 3π , 5π and $K\pi\pi$
- Modified log-likelihood with penalties:
 - Cauchy regularization to suppress small waves
 - Connected bins over m_X to smoothen $\mathcal{T}_i(m_X)$
- Wave pool:
 - $J \leq 8, M \leq 2, \epsilon = +$
 - $\xi \to \pi \pi: \rho(770), \rho(1450), \rho_3(1690)$
 - $\xi \rightarrow \omega \pi {:}\, b_1(1235), \rho(1450), \rho_3(1690)$
 - *L* ≤ 8
 - 893 waves + flat wave

Notation: $i = J^P M^{\epsilon} [\xi l] b LS$

Results $J^{PC} = 3^{++}$

Philipp Haas - CHEP 2023

Philipp Haas - CHEP 2023

Philipp Haas - CHEP 2023

Flat Wave

- Isotropic in 5-body phase-space
- Used to describe background

Philipp Haas - CHEP 2023