Anisotropic collective flow at Nuclotron/NICA energies

Arkadiy Taranenko (VBLHEP JINR, NRNU MEPhI)

CONFERENCE ON HIGH ENERGY PHYSICS, AANL, Yerevan, Armenia, September 11-14, 2023

"Squeeze-Out" - First Elliptic flow signal in HIC

Diogene, M. Demoulins et al., Phys. Lett. B241, 476 (1990)

Plastic Ball, H.H. Gutbrod et al., Phys. Lett. B216, 267 (1989)

Azimuthal anisotropy of particles at HIC

The sinus terms are skipped by symmetry arguments
 From the properties of Fourier's series one has

$$v_n = \langle \cos[n(\varphi - \Psi_{RP})] \rangle$$

□ Fourier coefficients V_n quantify anisotropic flow: v₁ is directed flow, v₂ is elliptic flow, v₃ is triangular flow, etc.

Term "flow" does not mean necessarily "hydro" flow – used only to emphasize the collective behavior of particles in event or multiparticle azimuthal correlation

Anisotropic Flow at RHIC-LHC

Initial eccentricity (and its attendant fluctuations) ϵ_n drive momentum anisotropy v_n with specific viscous modulation

Gale, Jeon, et al., Phys. Rev. Lett. 110, 012302 ATLAS 20-30%, EP 0.2 но-- $\tau_{switch} = 0.2 \text{ fm/c}$ нан 0.15 $\langle v_n^2 \rangle^{1/2}$ 0.1 η/s =0.2 0.05 0 0.2 RHIC 200GeV, 30-409 filled: STAR prelin 0.15 open: PHEN Va n/s = 0.12 $\langle v_n^2 \rangle^{1/2}$ V۸ 0.1 V5 0.05 0.5 1.5 2 p_T [GeV]

Anisotropic flow in Au+Au collisions at Nuclotron-NICA energies

Anisotropic flow at FAIR/NICA energies is a delicate balance between:

- I. The ability of pressure developed early in the reaction zone $(t_{exp} = R/c_s, c_s = c\sqrt{dp/d\varepsilon})$ and
- II. The passage time for removal of the shadowing by spectators ($t_{pass} = 2R/\gamma_{CM}\beta_{CM}$)

Elliptic Flow (v_2) at NICA energies: Models vs Data

at $\sqrt{s_{NN}} \ge 7.7$ GeV pure string/hadronic cascade models underestimate v_2 – need hybrid models with QGP phase (vHLLE+UrQMD, AMPT with string melting,...) at $\sqrt{s_{NN}} \ge 3-4.5$ GeV pure hadronic models give similar v_2 signal compared to STAR data

Nuclear incompressibility from collective proton flow

 ρ_{max}/ρ_0 : ~7 ρ_{max}/ρ_0 : ~2 ~3 ~7 0.05 less pressure 0.4 DATA more pressure O Plastic Ball □ EOS K=380 MeV cascade • E895 0.3 0.00 ◆ E877 = (GeV/c) <cos 2∳> DATA 0.2 167 300 Soft EOS Plastic Ball -0.05 210 D EOS 210 0.1 E895 167 cascade E877 -0.10 300 Hard EOS 0.0 K=380 MeV more pressure less pressure 0.1 0.5 1.0 5.0 10.0 0.1 0.5 1.0 5.0 10.0 E_{beam} /A (GeV) E_{beam}/A (GeV) off plane squeeze-out Elliptic flow: Transverse in-plane flow: bounce off resection plan Side splast $F = d(p_x/A)/d(y/y_{cm})$ bounce of off plane squeeze-out Bounce $dN/d\Phi \propto (1 + 2v_1 \cos \Phi + 2v_2 \cos 2\Phi)$

P. Danielewicz, R. Lacey, W.G. Lynch, Science 298 (2002) 1592

Sensitivity of Au+Au collisions to the symmetric nuclear matter equation of state at 2–5 nuclear saturation densities

Dmytro Oliinychenko,¹,^{*} Agnieszka Sorensen,¹,[†] Volker Koch,² and Larry McLerran¹ ¹Institute for Nuclear Theory, University of Washington, Box 351550, Seattle, Washington 98195, USA ²Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA

The main source of existing systematic errors in v_n measurements is the difference between results from different experiments (for example, FOPI and HADES, E895 and STAR) ⁸

MPD Experiment at NICA

- Bi+Bi: 50M at √s_{NN} = 9.2 GeV (prod. 25)
- Centrality determination: Bayesian inversion method
 and MC-Glauber
- Event plane determination: TPC, FHCal
- Track selection:
 - Primary tracks
 - ► $N_{TPC hits} \ge 16$
 - $0.2 < p_T < 3.0 \text{ GeV/c}$
 - ▶ |η| < 1.5</p>
 - PID ToF + dE/dx

Multi-Purpose Detector (MPD) Stage 1

Performance of $v_{1,2}$ of identified hadrons in MPD

Reconstructed and generated $v_{1,2}$ of identified hadrons have a good agreement for all methods

Triangular flow with MPD at NICA

Models show that higher harmonic ripples are more sensitive to the existence of a QGP phase In models, v_3 goes away when the QGP phase disappears?

15 M of reconstructed vHLLE + UrQMD events for Au+Au at 11.5 GeV

 $v_2{\{\Psi_{1,FHCal}\}}$

v_n of V0 particles: invariant mass fit method

Data set:

• 25 million events, UrQMD 3.4 non-hydro, 11.0 GeV, minbias

Geant4 simulation, full reconstruction with:

• TPCv7, TOFv7, FHCal

Centrality by TPC multiplicity, Event-plane method with FHCal Particle decays reconstructed with MpdParticle realistic cuts Differential flow signal extraction by bins in transverse momentum (or rapidity) with a simultaneous fit

$$v_{2}^{SB}(\mathbf{m}_{inv},\mathbf{p}_{T}) = v_{2}^{S}(\mathbf{p}_{T}) \frac{\mathbf{N}^{S}(\mathbf{m}_{inv},\mathbf{p}_{T})}{\mathbf{N}^{SB}(\mathbf{m}_{inv},\mathbf{p}_{T})} + v_{2}^{B}(\mathbf{m}_{inv},\mathbf{p}_{T}) \frac{\mathbf{N}^{B}(\mathbf{m}_{inv},\mathbf{p}_{T})}{\mathbf{N}^{SB}(\mathbf{m}_{inv},\mathbf{p}_{T})}$$

Outlook:

* Larger statistics with vHLLE (hydrodynamic evolution)

- * Larger signal magnitude due to hydro (realistic input)
- * Latest versions of detector geometry
- Multi-variate analysis for reconstructed particle selection (TMVA)
- KFParticle

Non-uniform acceptance corrections

Correction for non-uniform azimuthal acceptance

Corrections are based on method in: I. Selyuzhenkov and S. Voloshin PRC77, 034904 (2008)

The QnAnalysis package

Motivation:

- Decoupling configuration from implementation
- Persistency of analysis setup
- Co-existence of different setups (easy systematics study)
- Unification of analysis methods
- Self-descriptiveness of the analysis results

QnAnalysis requirements:

- ROOT ver. \geq 6.20 (with MathMore library)
- C++17 compatible compiler
- CMake ver. \geq 3.13

Can be easily installed on NICA cluster using ROOT and CMake modules

Git repository: https://github.com/HeavyIonAnalysis/QnAnalysis

<u>QnAnalysis</u>	
QnTools configuration	
Mapping <u>AnalysisTree</u> to internal objects of QnTool	
<u>QnTools</u> library)
FlowVectorCorrections library	
Q-vectors corrections	
Q-vectors correlations	
Building observables (resolution, flow, etc.)	

Acceptance correction

The applied acceptance corrections eliminated the influence of non-uniform acceptance 26

The BM@N experiment (GEANT4 simulation for Xe+Cs(I) run)

L1 tracking was used together with true-MC PID

Symmetry plane estimation with the azimuthal asymmetry of projectile spector energy

Azimuthal asymmetry of the BM@N acceptance

18

Directed and elliptic flow of protons in Xe+Cs(I) (JAM model)

Good agreement between reconstructed and pure model data for all three energies

BM@N (Baryonic Matter @ Nuclotron)

December 2022 – February 2023: first physics run with Xe+Cs(I) (3.0 AGeV (50 M events) и 3.4 AGeV (500 M events))

M_{inv} (GeV/c²)

8

25

30

BM@N vs MPD FXT: p_T -y acceptance

MPD has greater coverage of backward area (even covers projectile spectators) and MPD covers midrapidity region BM@N has greater coverage of forward area

BM@N vs MPD FXT: η - ϕ acceptance

MPD

BM@N

• MPD has more uniform acceptance along φ -axis

• BM@N has non-uniform acceptance due to square-like shape of the tracking system

Summary and outlook

- Measurements of anisotropic flow, flow fluctuations, correlations
- between flow of different harmonics are sensitive to many details of the initial conditions
- and the system evolution. It may provides access to the transport properties of the medium: EOS, sound speed (cs), viscosity, etc.
- v_n at NICA energies shows strong energy dependence:
 - > At $\sqrt{s_{NN}}$ =4.5 GeV v₂ from UrQMD, SMASH are in a good agreement with the experimental data
 - > At $\sqrt{s_{NN}} \ge 7.7$ GeV UrQMD, SMASH underestimate v_2 need hybrid models with QGP phase
 - > Detailed JAM model calculations for differential measurements of v_n at $\sqrt{s_{NN}} = 2.4-4.5$ GeV
 - > v₂ from cumulants of different orders
- Comparison of methods for elliptic flow measurements using UrQMD and AMPT models:
 - > The differences between methods are well understood and could be attributed to non-flow and fluctuations
- Feasibility study for anisotropic flow in MPD/MPD FXT/BM@N:
 - v_n of identified charged hadrons: results from reconstructed and generated data are in a good agreement for all methods
- Programs for flow analysis are available for MPD collaboration:

Back-up slides

RHIC BES programs

♦ Data taking by STAR at RHIC: $3 < \sqrt{s_{NN}} < 200 \text{ GeV} (750 < \mu_B < 25 \text{ MeV})$

Au+Au Collisions at RHIC												
Collider Runs						Fixed-Target Runs						
	√ <mark>S_{NN}</mark> (GeV)	#Events	μ_B	Ybeam	run		√ S_{NN} (GeV)	#Events	μ_B	Ybeam	run	
1	200	380 M	25 MeV	5.3	Run-10, 19	1	13.7 (100)	50 M	280 MeV	-2.69	Run-21	
2	62.4	46 M	75 MeV		Run-10	2	11.5 (70)	50 M	320 MeV	-2.51	Run-21	
3	54.4	1200 M	85 MeV		Run-17	3	9.2 (44.5)	50 M	370 MeV	-2.28	Run-21	
4	39	86 M	112 MeV		Run-10	4	7.7 (31.2)	260 M	420 MeV	-2.1	Run-18, 19, 20	
5	27	585 M	156 MeV	3.36	Run-11, 18	5	7.2 (26.5)	470 M	440 MeV	-2.02	Run-18, 20	
6	19.6	595 M	206 MeV	3.1	Run-11, 19	6	6.2 (19.5)	120 M	490 MeV	1.87	Run-20	
7	17.3	256 M	230 MeV		Run-21	7	5.2 (13.5)	100 M	540 MeV	-1.68	Run-20	
8	14.6	340 M	262 MeV		Run-14, 19	8	4.5 (9.8)	110 M	590 MeV	-1.52	Run-20	
9	11.5	157 M	316 MeV		Run-10, 20	9	3.9 (7.3)	120 M	633 MeV	-1.37	Run-20	
10	9.2	160 M	372 MeV		Run-10, 20	10	3.5 (5.75)	120 M	670 MeV	-1.2	Run-20	
11	7.7	104 M	420 MeV		Run-21	П	3.2 (4.59)	200 M	699 MeV	-1.13	Run-19	
						12	3.0 (3.85)	2000 M	750 MeV	-1.05	Run-18, 21	

- * A very impressive and successful program with many collected datasets, already available and expected results
- ✤ Limitations:
 - \checkmark Au+Au collisions only
 - ✓ Among the fixed-target runs, only the 3 GeV data have full mid-rapidity coverage for protons (|y| < 0.5),