

September 11, 2023 Conference on High Energy Physics AANL, Yerevan (Armenia)

<u>Outline:</u>

- Motivation to study dimuons
- Standard Model from Z boson to Rare decays
- Exotica search for new heavy resonances
- Conclusions

Public Results for ATLAS, CMS, LHCb: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/WebHome http://cms-results.web.cern.ch/cms-results/public-results/publications/

https://lhcb-outreach.web.cern.ch/category/physics-results/

Many major discoveries were made before the LHC in dimuon channel $(J/\psi, \Upsilon, Z, ...)$ — rather clean channel for finding new narrow resonances (often unexpected).

Why study dimuons at the LHC?

- Important Standard model benchmark channel. Theoretical cross sections calculated up to NNLO allowing tests of pQCD
- Many theoretical models predict contribution of New Physics in dimuon channel.
- Used to constrain PDFs
- Calibration and alignment, TnP
- Physics Processes produced in association with Z boson, $H \to ZZ$, $B \to \mu\mu$ discovery, 5σ discovery of $H \to b\bar{b}$ used also $Z \to \mu\mu$.

Alexander Lanyov Physics with Dimuons at the LHC Co

Conference on High Energy Physics 11.09.2023

Physics with Dimuons at the LHC

Conference on High Energy Physics

11.09.2023

Bird's-eye LHC Picture

Alexander Lanyov Physics w

Physics with Dimuons at the LHC

Conference on High Energy Physics 11.09.2023

Overview of Detectors at the LHC

	CMS	ATLAS	LHCb
Diameter, m	15	25	10-13
Length, m	28.7	46	21
Weight, kt	14	7	5.6
Magnetic field, T	3.8	2,0.5	1
Pseudorapidity $ \eta $	< 2.5	< 2.5	$2 < \eta < 5$

Statistics of Integrated Luminosity at LHC Data included from 2010-03-30 11:22 to 2023-07-16 23:02 UTC CMS — 2010, 7 TeV, 45.0 pb⁻¹ 2011, 7 TeV, 6.1 fb⁻¹ 30000 Total integrated luminosity (fb⁻¹) 0 0 0 0 0 0 2012, 8 TeV, 23.3 fb⁻¹ CMS 2010, 7 TeV, max. 203798.8 Hz/µb 2015, 13 TeV, 4.3 fb⁻¹ 2011, 7 TeV, max. 4017.2 Hz/µb luminosity (Hz/µb) 50000 120000 120000 2016, 13 TeV, 41.6 fb⁻¹ 2012, 8 TeV, max. 7665.7 Hz/µb 2015, 13 TeV, max, 5320,9 Hz/ub 2017, 13 TeV, 49.8 fb⁻¹ 2016, 13 TeV, max. 14749.6 Hz/µb 2018, 13 TeV, 67.9 fb⁻¹ 2017, 13 TeV, max. 20660.9 Hz/µb 2022, 13.6 TeV, 42.0 fb⁻

2018, 13 TeV, max. 21399.0 Hz/µb

1 Jan

1 Jan

, Jan

1 Jan

1 Jan

1 Jan

1 Jan

Date (UTC)

1 Jan

, Jan

2022, 13.6 TeV, max. 26228.6 Hz/µb 2023, 13.6 TeV, max. 22220.4 Hz/µb

• Run 1 with $\sqrt{s} = 7-8$ TeV: ~ 30 fb⁻¹

1 JUN 1 JUN 1 AUG 1 SEP 1 OCK 1 NON

Date (UTC)

0

1 APr

1 May

2023. 13.6 TeV. 31.4 fb

• Run 2 with $\sqrt{s} = 13$ TeV: Rapid rise of integrated luminosity ~140 fb⁻¹

1 De

- Mean luminosity is 2 times higher than $10^{34} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$ (original nominal value for LHC)
- Run 3 with $\sqrt{s} = 13.6$ TeV: started in 2022; Currently $\int \mathcal{L} dt \approx 70$ fb⁻¹ Expected by the end of the run: $\int \mathcal{L} dt \approx 300 \text{ fb}^{-1}$

, Jan

Drell-Yan

process studies

Z Production Cross Section at High \sqrt{s}

Used data with 5 fb⁻¹ at $\sqrt{s} = 13.6$ TeV Single muon trigger: $p_T > 24$ GeV, $|\eta| < 2.4$. $\sqrt{s} = 13$ TeV: CMS-PAS-SMP-20-004 ATLAS-CONF-2023-028 Z cross sections agree between the channels and with NNLO QCD within the uncertainties.

Differential measurements on y, p_T, ϕ_n^* : VS (TeV) CMS JHEP 12 (2019) 061, ATLAS-CONF-2023-013,

11

$\mu^+\mu^-$ channel

 e^+e^- channel

Data / MC comparison for mass spectra (with FEWZ NNLO predictions) Most important backgrounds for $\mu^+\mu^-$ channel:

- Low-mass region: QCD multi-jets
- Peak region: Drell-Yan $\rightarrow \tau^+ \tau^-$, $W \rightarrow l\nu$, dibosons
- High-mass region: $t\bar{t}$, single top, dibosons

FEWZ (NNLO QCD, NNPDF3.0)

• Combined both $\mu^+\mu^-$ and e^+e^- .

Mass dependence of the transverse momentum of DY lepton pairs (Eur. Phys. J. C83 (2023) 628)

Measured double differential cross sections of DY lepton pair production, as a function of $p_{\rm T}(\ell\ell)$, and φ^* , in bins of dilepton masses: $m \in [50, 76, 106, 170, 350, 1000]$ GeV.

Measurements are compared to state-of-the-art predictions based on perturbative QCD including soft gluon resummation.

Additionally, similar measurements were performed requiring at least one jet in the final state.

Conference on High Energy Physics

Measurement of A_{FB} can be a sensitive check of the Standard Model. $\frac{d\sigma}{d\cos\theta^*} \propto \frac{3}{8} \left[(1 + \cos^2\theta^*) + \frac{A_0}{2} (1 - 3\cos^2\theta^*) \right] + A_{FB}\cos\theta^*$ θ^* is angle between μ^- and quark direction in dilepton rest frame

- Good agreement to SM prediction of $A_{FB} \approx 0.6$
- Used to set limits on the presence of additional gauge boson Z' in the sequentual standard model (SSM): Lower mass limit = 4.4 TeV is set at 95% CL.
- $A_{\rm FB}$ can be used to measure Weinberg weak mixing angle $\sin^2 \theta_W$

General structure of the lepton angular distribution in Z boson rest frame:

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}\cos\theta^*\mathrm{d}\phi^*} \propto \left[(1+\cos^2\theta^*) + A_0 \frac{1}{2} (1-3\cos^2\theta^*) + A_1 \sin(2\theta^*) \cos\phi^* + A_2 \frac{1}{2}\sin^2\theta^* \cos(2\phi^*) \right]$$

 $+A_{3}\sin\theta^{*}\cos\phi^{*}+A_{4}\cos\theta^{*}+A_{5}\sin^{2}\theta^{*}\sin(2\phi^{*})+A_{6}\sin(2\theta^{*})\sin\phi^{*}+A_{7}\sin\theta^{*}\sin\phi^{*}\Big]$ where θ^{*} and ϕ^{*} are azimuthal and polar angles.

The violation of Lam-Tung relation $A_0 - A_2 = 0$ is observed, as predicted by QCD calculations beyond NLO:

See details in the talk by Vlad Shalaev 15

Rare Dimuon Decays in Standard Model

Discovery of Dimuon decay of B_s^0 & B^0 (LHCb-CONF-2020-002)

Search for Higgs $\rightarrow \mu^+\mu^-$ (JHEP 01 (2021) 148)

11.09.2023

Exotica (Search of new heavy resonances)

Many theories beyond Standard Model developed to address SM omissions. New heavy resonances appear naturally in various extensions of Standard Model:

- E_6 models $Z'_{\psi}, Z'_{\chi}, Z'_{\eta}$ arise in different ways of breaking E_6 symmetry group $E_6 \to SO(10) \times U(1)_{\psi}; SO(10) \to SU(5) \times U(1)_{\chi}; Q_{Z'} = Q_{\psi} \sin(\theta_6) + Q_{\chi} \cos(\theta_6)$
- SSM (Sequential Standard Model) or "reference" model The same coupling constants for Z' as for the SM
- Heavy graviton resonances are predicted by RS1 (Randall-Sundrum) model of TeV-scale gravity with one additional warped extra dimension: coupling constant $c = k/\bar{M}_{Pl}$

<u>Non-resonant models</u> such as ADD and Contact interactions:

- ADD (Arkani-Hamed–Dimopoulos–Dvali) large flat extra dimensions, low-energy effective string scale Λ_T
- Contact interactions model comes from idea of quark and lepton compositeness. Conventional benchmark — 4-fermion interaction model $\mathcal{L} \sim \frac{4\pi}{\Lambda^2} (\bar{q}_L \gamma^{\mu} q_L) (\bar{l}_L \gamma_{\mu} l_L)$. Λ — the energy scale parameter for the contact interaction.

There exist also other models in which heavy dileptons appear.

$M = 3.3 { m ~TeV}$

Muons: $p_T = 610, 540 \text{ GeV}, \eta = -1.52, +1.96$

Dilepton Mass Spectrum in the LHC Run2

• Existence (or lack) of a signal is established by performing unbinned maximum likelihood fits to the observed spectrum.

Alexander Lanyov

Z' cross section can be expressed in terms of quantity $[c_u w_u + c_d w_d]$ (arXiv:1010.6058):

$$\sigma_{l+l^{-}}^{Z'} = \frac{\pi}{48s} \left[c_u w_u(s, M_{Z'}^2) + c_d w_d(s, M_{Z'}^2) \right]$$

 c_u , c_d contain information from the model-dependent couplings to fermions in the annihilation of charge 2/3 and -1/3 quarks, respectively.

 w_u, w_d contain information about the PDFs.

 $Z'_{\rm SSM}$ is a special case of generalized sequential standard models (GSM), Z'_{ψ} is one of the E_6 models, generalized L-R models can also be included.

Plot shows iso-contours of cross section with constant $c_u + (w_d/w_u)c_d$. Changing this combination (or $\int L dt$) by 1 order of magnitude moves the mass limits by ≈ 1 TeV.

JHEP 07 (2021) 208; arXiv:2103.02708 with 140 fb⁻¹at $\sqrt{s} = 13 \text{ TeV}_{24}$ Alexander Lanyov Physics with Dimuons at the LHC Conference on High Energy Physics 11.09.2023

Limits at 95% C.L. on the ratio of Z' cross section to Z cross section, assuming a narrow resonance Limits exclude $Z'_{\rm SSM}$ with a mass less than 5.1 TeV. For $\mu^+\mu^- - 4.5 \ (Z'_{SSM})$, for ee - 4.9 TeV.

Limits for HVT model (heavy vector triplet): a new SU(2) gauge group, leading to a triplet of new bosons: $Z'_{\rm HVT}$ and $W'^{\pm}_{\rm HVT}$. The results are exclusion contours in HVT coupling parameter space (g_l, g_q, g_h) .

Alexander Lanyov Ph

Simplified model of dark matter production via a mediator particle in *s* channel, Used 2 sets of benchmark coupling values from "Recommendations of the LHC Dark Matter Working Group" (arXiv:1703.05703, CERN-LPCC-2017-01):

- Vector mediator with small couplings to leptons: $g_{\rm DM} = 1.0, g_{\rm q} = 0.1, g_{\ell} = 0.01;$
- Axial-vector mediator with equal couplings to q and ℓ : $g_{\rm DM} = 1.0, g_{\rm q} = g_{\ell} = 0.1$.

Limits at 95% confidence level are obtained for masses of DM particle and mediator.

Lepton flavor universality was tested for the first time at the TeV scale by comparing $\mu^+\mu^-$ and e^+e^- mass spectra: $R_{\mu^+\mu^-/e^+e^-} = \frac{d\sigma(\mu^+\mu^-)/dm_{\ell\ell}}{d\sigma(e^+e^-)/dm_{\ell\ell}}$ No significant deviations from SM observed.

At very high masses, the statistical uncertainties are large. Here, some deviations from unity are observed, caused by the slight excess in the dielectron channel.

A χ^2 test for the mass range above 400 GeV is performed: $\chi^2/dof = 11.2/7$ and 9.4/7 for m > 400 GeV.

Projections for limits on dimuon masses and on cross sections at $\sqrt{s} = 14$ TeV at $\int L dt = 3000$ fb⁻¹ is ~ 7 TeV for SSM model.

Discovery with 5 σ significance can be made up to mass of ~ 6.3 TeV for SSM model.

Limits for many other searches of Exotica at CMS performed.

http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO/

Limits for many other searches of Exotica at ATLAS performed.

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits Status: May 2020

ATLAS Preliminary $\int \mathcal{L} dt = (3.2 - 139) \text{ fb}^{-1}$ $\sqrt{s} = 8, 13 \text{ TeV}$

	Model	<i>ℓ</i> ,γ	Jets†	ET	∫£ dt[fb	¹] Limit	Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p\tau$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $G_{KK} \rightarrow WW \rightarrow \ell \nu qq$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu \\ 2\gamma \\ - \\ \geq 1 \ e, \mu \\ \hline 2\gamma \\ \text{multi-channe} \\ 1 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$1-4j$ $-2j$ $\geq 2j$ $\geq 3j$ $-2j/1J$ $\geq 1b, \geq 1Jd$ $\geq 2b, \geq 3$	Yes - - - Yes /2j Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} 1711.03301\\ 1707.04147\\ 1703.09127\\ 9V, \text{ rot BH}\\ 1606.02265\\ 9V, \text{ rot BH}\\ 1512.02586\\ 1707.04147\\ 1808.02380\\ 2004.14636\\ 1804.10823\\ 1004.14626\\ 1804.10823\\ 1004.14626\\ 1804.10823\\ 1004.14626\\ 1804.10823\\ 1004.14626\\ 1804.10823\\ 1004.14626\\ 1804.10823\\ 1004.14626\\ 1804.10823\\ 1004.14626\\ 1804.10823\\ 1004.14626\\ 1804.10823\\ 1004.1462\\ 1804.10823\\ 1004.146\\ 1804.10823\\ 1004.146\\ 1804.10823\\ 1004.146\\ 1804.10823\\ 1004.146\\ 1804.10823\\ 1004.146\\ 1804.10823\\ 1004.146\\ 1804.10823\\ 1004.146\\ 1804.10823\\ 1004.146\\ 1804.10823\\ 1004.146\\ 1804.10823\\ 1804.10823\\ 1004.146\\ 1804.10823\\ 1004.146\\ 1804.10823\\ 1004.146\\ 1804.10823\\ 1004.146\\ 1804.10823\\ 1004.146\\ 1804.10823\\ 1004.146\\ 1804.10823\\ 1004.146\\ 1804.10823\\ 1004.146\\ 1804.10823\\ 1004.146\\ 1804.10823\\ 1004.146\\ 1804.10823\\ 1004.146\\ 1804.10823\\ 1004.146\\ 1804.10823\\ 1004.146\\ 1804.10823\\ 1004.146\\ 1804.10823\\ 1004.146\\ 1804.10823\\ 1004.146\\ 1804.10823\\ 1004.146\\ 1804.10823\\ 1004.146\\ 1804.10823\\ 1004.166\\ 1804.10823\\ 1006.166\\ 1804.10823\\ 1006.166\\ 1804.10823\\ 1006.166\\ 1804.10823\\ 1006.166\\ 1804.10823\\ 1006.166\\ 1804.10823\\ 1006.166\\ 1804.10823\\ 1006.166\\ 1804.10823\\ 1006.166\\ 1804.10823\\ 1006.166\\ 1804.10823\\ 1006.166\\ 1804.108$
Gauge bosons	$\begin{array}{l} \mathrm{SSM}\; Z' \to \ell\ell \\ \mathrm{SSM}\; Z' \to \tau\tau \\ \mathrm{Leptophobic}\; Z' \to bb \\ \mathrm{Leptophobic}\; Z' \to tt \\ \mathrm{SSM}\; W' \to \ell\nu \\ \mathrm{SSM}\; W' \to \tau\nu \\ \mathrm{HVT}\; W' \to WZ \to \ell\nu qq q \mbox{ model}\; \mathrm{B} \\ \mathrm{HVT}\; V' \to WV \to qq qq \mbox{ model}\; \mathrm{B} \\ \mathrm{HVT}\; V' \to WH/ZH \mbox{ model}\; \mathrm{B} \\ \mathrm{HVT}\; W' \to WH \mbox{ model}\; \mathrm{B} \\ \mathrm{LRSM}\; W_R \to tb \\ \mathrm{LRSM}\; W_R \to \mu N_R \end{array}$	$2 e, \mu$ 2τ $-$ $0 e, \mu$ 1τ $3 1 e, \mu$ $3 0 e, \mu$ multi-channe 2μ	2b ≥1b,≥2 2j/1J 2J el ≥1b,≥2 el 1J	_ J Yes Yes Yes J	139 36.1 36.1 139 36.1 139 36.1 139 36.1 139 36.1 80	Z' mass 5.1 TeV Z' mass 2.42 TeV Z' mass 2.1 TeV Z' mass 2.1 TeV W' mass 6.0 TeV W' mass 6.0 TeV W' mass 3.7 TeV W' mass 3.8 TeV V' mass 2.93 TeV V' mass 3.2 TeV W' mass 3.2 TeV Wr mass 3.2 TeV Wr mass 3.2 TeV Wr mass 5.0 TeV	$\begin{array}{c} 1903.06248\\ 1709.07242\\ 1805.09299\\ 2205.05138\\ 1906.05609\\ 1801.06992\\ 2004.14636\\ 1906.08589\\ 1712.06518\\ CERN-EP-2020-073\\ 1807.10473\\ 4, g_L = g_R \\ 1904.12679 \end{array}$
CI	Cl qqqq Cl ℓℓqq Cl tttt	_ 2 e, μ ≥1 e,μ	2 j ≥1 b, ≥1 j	_ Yes	37.0 139 36.1	Λ 21.8 TeV η Λ 2.57 TeV 35 Λ 2.57 TeV $ C_{4t} = 4\pi$	<i>L</i> 1703.09127 8 TeV <i>η L</i> CERN-EP-2020-066 1811.02305 1811.02305
DM	Axial-vector mediator (Dirac DM) Colored scalar mediator (Dirac D $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t\chi$ (Dirac DM)	0 e, μ Μ) 0 e, μ 0 e, μ 0-1 e, μ	1 – 4 j 1 – 4 j 1 J, ≤ 1 j 1 b, 0-1 J	Yes Yes Yes Yes	36.1 36.1 3.2 36.1	mmad 1.55 TeV g_q =0.25, g_χ =1.0, mmad 1.67 TeV g =1.0, $m(\chi)$ = 1 Ma 700 GeV $m(\chi) < 150 \text{ GeV}$ Mp 3.4 TeV $y = 0.4, \lambda = 0.2$	$ \begin{array}{c} m(\chi) = 1 \ {\rm GeV} \\ {\rm GeV} \\ n(\chi) = 10 \ {\rm GeV} \\ n(\chi) = 10 \ {\rm GeV} \end{array} \begin{array}{c} 1711.03301 \\ 1608.02372 \\ 1812.09743 \end{array} $
ГQ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2 e 1,2 μ 2 τ 0-1 e,μ	≥2j ≥2j 2b 2b	Yes Yes – Yes	36.1 36.1 36.1 36.1	LQ mass 1.4 TeV $\beta = 1$ LQ mass 1.56 TeV $\beta = 1$ LQ ^a mass 1.03 TeV $\beta (LQ_3^c \to br) = \beta$ LQ ^a mass 970 GeV $\mathcal{B}(LQ_3^d \to tr) = \beta$	1902.00377 1902.00377 1 1902.00377 1 1902.08103 0 1902.08103
Heavy quarks	$ \begin{array}{l} VLQ\;TT \rightarrow \mathit{Ht}/\mathit{Zt}/\mathit{Wb} + X \\ VLQ\;\mathit{BB} \rightarrow \mathit{Wt}/\mathit{Zb} + X \\ VLQ\;\mathit{T_{5/3}}\;T_{5/3} \rightarrow \mathit{Wt} + X \\ VLQ\;\mathit{T_{5/3}}\;T_{5/3} \rightarrow \mathit{Wt} + X \\ VLQ\;\mathit{Y} \rightarrow \mathit{Wb} + X \\ VLQ\;\mathit{B} \rightarrow \mathit{Hb} + X \\ VLQ\;\mathit{QQ} \rightarrow \mathit{WqWq} \end{array} $	multi-channe multi-channe 2(SS)/≥3 e,, 1 e, μ 0 e,μ, 2 γ 1 e, μ	el el ≥ 1 b, ≥ 1 j ≥ 1 b, ≥ 1 ≥ 1 b, ≥ 1 ≥ 4 j	Yes j Yes j Yes Yes	36.1 36.1 36.1 36.1 79.8 20.3	T mass 1.37 TeV SU(2) doublet B mass 1.34 TeV SU(2) doublet T ₅₀ mass 1.64 TeV $SU(2)$ doublet Y mass 1.65 TeV $B(T_{5/3} \rightarrow Wt) =$ Y mass 1.85 TeV $B(Y \rightarrow Wb) =$ Q mass 690 GeV $K_B = 0.5$	$\begin{array}{c c} & & & & & & & \\ & & & & & & & \\ 1, c(T_{5/3}Wt) = 1 & & & & & \\ 1808.02343 & & & & & \\ 1807.11883 & & & & \\ c_R(Wb) = 1 & & & & & \\ 1812.07343 & & & & \\ ATLAS-CONF-2018-024 & & & \\ 1509.04261 & & & & \\ \end{array}$
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton γ^*	- 1 γ - 3 e,μ 3 e,μ,τ	2j 1j 1b,1j –	- - - -	139 36.7 36.1 20.3 20.3	q* mass 6.7 TeV only u* and d*, A g* mass 5.3 TeV only u* and d*, A b* mass 2.6 TeV only u* and d*, A b* mass 2.6 TeV A = 3.0 TeV v* mass 1.6 TeV A = 1.6 TeV	$= m(q^{\circ}) $ $= m(q^{\circ}) $ 1910.08447 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particles Magnetic monopoles $\sqrt{s} = 8 \text{ TeV}$	$\begin{array}{c} 1 e, \mu \\ 2 \mu \\ 2,3,4 e, \mu (St \\ 3 e, \mu, \tau \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	≥ 2 j 2 j S) - - - - -	Yes 3 TeV	79.8 36.1 36.1 20.3 36.1 34.4	N° mass 560 GeV N _R mass 3.2 TeV H ^{±±} mass 870 GeV H ^{±±} mass 400 GeV multi-charged particle mass 1.22 TeV DY production, β	V, $g_L = g_R$ ATLAS-CONF-2018-020 1809.11105 1710.09748 $(H_L^{\pm\pm} \rightarrow \ell_T) = 1$ 1411.2921 $= 5e$ 1812.03673 $= 1g_D$, spin 1/2 1905.10130
	pa	dai data	iuiid	ala		Mass s	cale [TeV]

Conference on High Energy Physics 11.09.2023

- Dimuon is a unique channel providing clean signal with small background even for large pileup at the LHC. Has become basics for many physics analyses.
- New ranges have been studied with the increased energy and luminosity. Run3 has accumulated $\sim 70 \,\text{fb}^{-1}$ at $\sqrt{s} = 13.6 \,\text{TeV}$.
- This enables us to better study the Standard Model physics, and to obtain limits for the New Physics.
 E.g. for the benchmark SSM model the mass limits reached 5.1 TeV
 - and for the HL LHC it is expected to reach 7 TeV.
- We are looking forward for new discoveries. Stay tuned for the news!

Publications by experiments:

http://cms-results.web.cern.ch/cms-results/public-results/publications/

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/

https://lhcb-outreach.web.cern.ch/category/physics-results/

Backup slides

Total weight: 14000 tonnesOverall diameter: 15.0 mOverall length: 28.7 mMagnetic field: 3.8 T

HADRON CALORIMETER (HCAL) Brass + plastic scintillator

MUON CHAMBERS Barrel: 250 Drift Tube & 500 Resistive Plate Chambers Endcaps: 450 Cathode Strip & 400 Resistive Plate Chambers

RDMS (Russia and Dubna Member States) has a full responsibility for internal endcap detectors: ME1/1 (Muon Endcap) and HE (Hadron calorimeter endcap)

- Mean luminosity is more than $10^{34} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$ (original nominal value for LHC)
- Rapid rise of integrated luminosity in 2016–2018 with $\sqrt{s} = 13$ TeV
- Total for physics analysis in Run 2 $\int \mathcal{L} dt \approx 140 \text{ fb}^{-1}$
- Data taking efficiency > 90%

U'(1) model	Mixing angle	$\mathcal{B}(\ell^+\ell^-)$	c_{u}	$c_{ m d}$	$c_{\rm u}/c_{\rm d}$	$\Gamma_{Z^\prime}/M_{Z^\prime}$
E_6						3
$\mathrm{U}(1)_{\chi}$	0	0.061	6.46×10^{-4}	$3.23 imes 10^{-3}$	0.20	0.0117
$\mathrm{U}(1)_\psi$	0.5π	0.044	$7.90 imes 10^{-4}$	$7.90 imes 10^{-4}$	1.00	0.0053
$\mathrm{U}(1)_{\eta}$	-0.29π	0.037	1.05×10^{-3}	6.59×10^{-4}	1.59	0.0064
$U(1)_S$	0.129π	0.066	1.18×10^{-4}	$3.79 imes 10^{-3}$	0.31	0.0117
$U(1)_N$	0.42π	0.056	$5.94 imes 10^{-4}$	$1.48 imes 10^{-3}$	0.40	0.0064
LR.						
$U(1)_R$	0	0.048	4.21×10^{-3}	4.21×10^{-3}	1.00	0.0247
$\rm U(1)_{B-L}$	0.5π	0.154	3.02×10^{-3}	3.02×10^{-3}	1.00	0.0150
$U(1)_{LR}$	-0.128π	0.025	1.39×10^{-3}	2.44×10^{-3}	0.57	0.0207
$U(1)_{Y}$	0.25π	0.125	1.04×10^{-2}	3.07×10^{-3}	3.39	0.0235
GSM						
$\rm U(1)_{SM}$	-0.072π	0.031	2.43×10^{-3}	$3.13 imes 10^{-3}$	0.78	0.0297
$U(1)_{T3L}$	0	0.042	6.02×10^{-3}	6.02×10^{-3}	1.00	0.0450
$\mathrm{U}(1)_{\mathrm{Q}}$	0.5π	0.125	6.42×10^{-2}	1.60×10^{-2}	4.01	0.1225

Table 1. Various benchmark models with their corresponding mixing angles, their branching fraction (\mathcal{B}) to dileptons, the $c_{\rm u}$ and $c_{\rm d}$ parameter values and their ratio, and the width to mass ratio of the associated Z' boson.

History and CMS Publications on Searches for Heavy Dilepton Resonances

WJS2013

Publications and Results on Searches for Heavy Dilepton Resonances:

Date	Paper			$\mathbf{L},$	$Z' ext{ Models}$		RS1 Model		
	Reference	arXiv	${ m TeV}$	fb^{-1}	SSM	Z'_ψ	c = 0.1	c = 0.05	c = 0.01
03.2011	JHEP 05 (2011) 093	1103.0981	7	0.040	1.14	0.89	1.08	0.86	
06.2012	PL B714 (2012) 158	1206.1849	7	5	2.33	2.00	2.14	1.81	
12.2012	PL B720 (2013) 63	1212.6175	7+8	$5.3 {+} 4.1$	2.59	2.26	2.39	2.03	
12.2014	JHEP 04 (2015) 025	1412.6302	8	20.6	2.90	2.57	2.73	2.35	1.27
12.2015	CMS PAS EXO-15-005			2.8	3.15	2.60			
09.2016	EXO-15-005 paper	1609.05391	8+13	$20.6 {+} 2.9$	3.37	2.82	3.11		1.46
08.2016	CMS PAS EXO-16-031		13	13.0	4.00	3.50			
03.2018	JHEP 1806 (2018) 120	1803.06292	13	36	4.50	3.90	4.25	3.65	2.10
03.2021	JHEP 07 (2021) 208	2103.02708	13	140	5.15	4.56	4.78	4.16	2.47

CMS Z' Dilepton Limits vs Integrated Luminosity

http://cms-results.web.cern.ch/cms-results/public-results/publications/SMP

Alexander Lanyov

Physics with Dimuons at the LHC

Conference on High Energy Physics 11.0

11.09.2023

Summary of SM Physics Results (ATLAS)

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults

Standard Model Total Production Cross Section Measurements

Status: February 2022

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults Alexander Lanyov Physics with Dimuons at the LHC Conference on High Energy Physics 11.09.2023

- Measured jet multiplicity distribution.
- Also studied the scalar sum of the jet $p_{\rm T}$ which quantifies the hadronic activity in the event.
- The measurements are compared with predictions from several MC generators.

Run1 (20 fb⁻¹ at 8 TeV): excluded Z' dilepton resonances for $M \leq 2.9$ TeV _{WJS2013}

Each 1 fb⁻¹ at $\sqrt{s} = 13$ TeV gives the same sensitivity as the whole Run1. A unique chance to test new mass ranges!

6 bins on $M_{\mu\mu}$ at 20, 30, 45, 60, 120, 200, 1500 GeV, 24 bins for |y| = 0 - 2.4For M > 200 GeV - 12 bins for |y| = 0 - 2.4

Within the detector acceptance to reduce the model dependence.

Good agreement with FEWZ, but deviations exist at low and high mass regions. Double differential xsecs provide a high sensitivity to NNLO QCD effects and could yield precise constraints on the PDFs.

Limits for many other searches of Exotica at CMS performed.

An excess of events near a $M(\mu\mu) = 28 \text{ GeV}$ was observed by CMS in the 8 TeV data. Association with *b* quarks was required and two categories of events were considered. A similar analysis conducted with 13 TeV data results in a mild excess in one category and a deficit in another one. \Rightarrow More data and additional theoretical input are required to fully understand these results.

Alexander Lanyov Physics with Dimuons at the LHC

Conference on High Energy Physics 11.09.2023

Alexander Lanyov

The result is extracted from a simultaneous fit to data regions containing mainly Z boson decay to invisible particles $(\nu \bar{\nu})$ and those dominated by Z boson decay to e^+e^- and $\mu^+\mu^-$.

 $\Gamma_{\text{Invisible}} = 523 \pm 3(\text{stat}) \pm 16(\text{syst}) \text{ MeV}.$

Precision is similar to LEP direct combination

First measurement of the Z invisible width at a hadron collider.

The single most precise direct measurement in the world, competitive with the combined direct measurement from LEP.

Physics with Dimuons at the LHC Conference on High Energy Physics 11.09.2023

An RS1 graviton with coupling c = 0.10 is excluded below 4.78 TeV. An RS1 graviton with coupling c = 0.05 is excluded below 4.16 TeV. An RS1 graviton with coupling c = 0.01 is excluded below 2.47 TeV.

Additionally, a measurement is performed requiring at least one jet in the final state. Shown differential unfolded cross sections in $p_T^{\ell\ell}$ for one or more jets in different invariant mass ranges.

Measurements are compared to state-of-theart predictions based on perturbative quantum chromodynamics including soft gluon resummation.

Future Circular Collider (~100 TeV) and HE-LHC (~27 TeV)

FCC-ee collider parameters

International FCC collaboration (CERN as host lab) to study:

- pp-collider (FCC-hh) → main emphasis, defining infrastructure requirements ~16 T => 100 TeV pp in 100 km
- ~100 km tunnel infrastructure in Geneva area, site specific
- e⁺e⁻ collider (FCC-ee), as potential first step
- HE-LHC with FCC-hh technology
- p-e (FCC-he) option, integration of one IP, e from ERL
- CDR for end 2018

		Ζ	VV	H (ZH)	ttbar
b	oeam energy [GeV]	45.6	80	120	182.5
a	arc cell optics	60/60	90/90	90/90	90/90
e	emittance hor/vert [nm]/[pm]	0.27/1.0	0.28/1.0	0.63/1.3	1.45/2.7
β	3* horiz/vertical [m]/[mm]	0.15/.8	0.2/1	0.3/1	1/2
S	SR energy loss / turn (GeV)	0.036	0.34	1.72	9.21
t	otal RF voltage [GV]	0.10	0.44	2.0	10.9
e	energy acceptance [%]	1.3	1.3	1.5	2.5
e	energy spread (SR / BS) [%]	0.038 / 0.132	0.066 / 0.153	0.099/0.151	0.15/0.20
b	ounch length (SR / BS) [mm]	3.5 / 12.1	3.3 / 7.65	3.15 / 4.9	2.5/3.3
b	ounch intensity [1011]	1.7	1.5	1.5	2.8
n	no. of bunches / beam	16640	2000	393	39
b	peam current [mA]	1390	147	29	5-4
S	5R total power [MW]	100	100	100	100
b	uminosity [10 ³⁴ cm ⁻² 5 ⁻¹]	230	32	7.8	1.5
b	uminosity lifetime [min]	70	50	42	44
a	allowable asymmetry [%]	±5	±3	±3	±3

Fastest Possible Technical Schedules

technical schedule defined by magnets program and by CE → earliest possible physics starting dates:

- FCC-hh: 2043
- FCC-ee: 2039
- HE-LHC: 2040 (with HL-LHC stop at LS5 / 2034)

parameter	FC	C-hh	HE-LHC	HL-LHC	LHC
collision energy cms [TeV]	1	00	27	14	14
dipole field [T]	1	6	16	8.33	8.33
circumference [km]	97	.75	26.7	26.7	26.7
beam current [A]	0	.5	1.12	1.12	0.58
bunch intensity [10 ¹¹]	1	1 (0.2)	2.2 (0.44)	2.2	1.18
bunch spacing [ns]	25	25 (5)	25 (5)	25	25
synchr. rad. power / ring [kW]	24	100	101	7.3	3.6
SR power / length [W/m/ap.]	2	8.4	4.6	0.33	0.17
long. emit. damping time [h]	0.	54	1.8	12.9	12.9
beta* [m]	1.1	0.3	0.25	0.20	0.55
normalized emittance [µm]	2.2	(0.4)	2.5 (0.5)	2.5	3.75
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	30	25	5	1
events/bunch crossing	170	1k (200)	~800 (160)	135	27
stored energy/beam [GJ]	8	.4	1.3	0.7	0.3

Physics with Dimuons at the LHC

Measurement of P_1 and P'_5 angular parameters of the decay $B^0 \to K^{*0} \mu^+ \mu^-$ (Phys.Lett. B781 (2018) 517)

The LHCb collaboration [arXiv:1512.04442] reported differences with predictions based on the Standard Model at the level of 3.4 standard deviations. in angular analysis of the $B^0 \to K^{*0} (\to K^+ \pi^-) \mu^+ \mu^-$ decay.

CMS measured the same angular parameters with 20 fb⁻¹ in Phys. Lett. B781 (2018) 517. Angular distribution of $B^0 \to K^{*0} \mu^+ \mu^-$ can be written as $\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}q^2\mathrm{d}\cos\theta_{\mathrm{I}}\mathrm{d}\cos\theta_{\mathrm{K}}\mathrm{d}\phi} = \frac{9}{8\pi} \left\{ \frac{2}{3} \left[\left(F_{\mathrm{S}} + A_{\mathrm{S}}\cos\theta_{\mathrm{K}} \right) \left(1 - \cos^2\theta_{l} \right) + A_{\mathrm{S}}^5 \sqrt{1 - \cos^2\theta_{\mathrm{K}}} \sqrt{1 - \cos^2\theta_{l}} \cos\phi \right] \right\}$ + $(1 - F_{\rm S}) \left[2F_{\rm L} \cos^2 \theta_{\rm K} \left(1 - \cos^2 \theta_l \right) + \frac{1}{2} \left(1 - F_{\rm L} \right) \left(1 - \cos^2 \theta_{\rm K} \right) \left(1 + \cos^2 \theta_l \right) + \frac{1}{2} P_1 (1 - F_{\rm L}) \right) \right]$ $(1-\cos^2\theta_{\rm K})(1-\cos^2\theta_l)\cos 2\phi + 2P_5'\cos\theta_{\rm K}\sqrt{F_{\rm L}(1-F_{\rm L})}\sqrt{1-\cos^2\theta_{\rm K}}\sqrt{1-\cos^2\theta_l}\cos\phi\Big]\Big\}.$

Variables P_1 and P'_5 of the decay $B^0 \to K^{*0} \mu^+ \mu^-$ are function of q^2 .

 θ_l is the angle between the positive muon momentum and the direction opposite to the B^0 in the dimuon rest frame.

 θ_K is the angle between the kaon momentum and the direction opposite to the B^0 in the K^{*0} rest frame.

two muons and the plane containing the kaon and pion in the B^0 rest frame.

Alexander Lanyov Physics with Dimuons at the LHC

FCNC decays are highly suppressed in the SM ϕ is the angle between the plane containing the \implies particularly sensitive to the effects of New physics. An angular analysis as a function of q^2 allows the decay to be thoroughly investigated. New physics may modify the angular variables.54 Conference on High Energy Physics 11.09.2023

Measured values of P_1 and P'_5 vs q^2 , compared with LHCb and Belle results.

For each bin of the dimuon invariant mass squared (q^2) , unbinned maximum-likelihood fits were performed to the distributions of the $K^+\pi^-\mu^+\mu^-$ invariant mass and the three decay angles, to obtain values of the P_1 and P'_5 parameters.

The results for the P_1 and P'_5 parameters are among the most precise to date and are consistent with standard model predictions and previous measurements.

Potentially interested analysis since the B flavor anomalies can be arose, in particular, from extra gauge boson Z' [see e.g. J. Ellis et al., arXiv:1705.03447; W. Altmannshofer at al., arXiv:1703.09189]. 55 Perspectives for Measurement of P_1 and P'_5 angular par. of the decay $B^0 \to K^{*0} \mu^+ \mu^-$ (CMS PAS FTR-18-033)

Projected uncertainties on the P'_5 parameter versus q^2 at 3000 fb⁻¹. Blue vertical bars show CMS Run I measurement of P'_5 . Two lower pads represent statistical/total uncertainties with the finer q^2 binning. 56

Search for a light pseudoscalar Higgs boson (A) produced in association with b quarks $(p_T > 20 \text{ GeV})$ and decaying into $\mu\mu \ (p_T^{\mu 1} > 25 \text{ GeV}, \ p_T^{\mu 2} > 5 \text{ GeV})$. No signal is observed in the dimuon mass range from 25 to 60 GeV. Upper limits are set on $\sigma(pp \to b\bar{b}A) \times \text{Br}(A \to \mu\mu)$.

Search for decays of Higgs bosons of SM (M = 125 GeV) to a pair of light bosons, based on models with extended scalar sectors.

Searched for light boson for M = 5 - 62.5 GeV in final states $\mu\mu bb$, $\mu\mu\tau\tau$, $\tau\tau\tau\tau$. Deviation for $\mu\mu\tau\tau$ has local significance of 3.5 σ at M = 20 GeV, still the global significance is smaller than 2 σ .

Upper limits are set on the product of the cross section and branching fraction.

N = signal yield

A = acceptance

$$\sqrt{s} = 13 \text{ TeV } 2.7 \text{ fb}^{-1}$$

Goal: Measure $\sigma_i = \frac{N_i}{A_i \varepsilon_i L_{\text{int}}}$

Procedure:

• Event and dimuon selection $\varepsilon =$ efficiency

 $L_{\rm int} = {\rm integrated \ luminosity}$

i = mass bin (15-3000 GeV)

• Background subtraction Dominant background estimation using data-driven methods

Here

- Acceptance and efficiency calculation using MC, Acceptance correction using NNLO calculation with FEWZ
- Efficiency correction using data-driven method
- Unfolding correction
- Systematic error estimation
- Absolute cross section measurement
- Double-ratio calculation
- Comparison with theory predictions

- \Rightarrow Probe NNLO calculations at high precision
- \Rightarrow Larger data sample, up to M = 3000 GeV
- $\Rightarrow Provide absolute cross sections More suitable for constraining PDFs.$
- \Rightarrow Ratios of xsec for 7 and 8 TeV

Physics with Dimuons at the LHC

Measured forward-backward asymmetry $A_{\rm FB}$ of the dimuon system and the contribution $F_{\rm H}$ from the pseudoscalar, scalar, and tensor amplitudes to the decay width are measured as a function of the dimuon mass squared. The measurements are consistent with the standard model expectations.

For pp collider, quark direction is not known.

One can only study A_{FB} by approximating the quark direction with the boost direction of the dimuon system with respect to the beam axis.

Mistag probability (Fraction of events with wrong quark direction) vs dimuon rapidity:

Fit:
$$\omega(y) = \frac{1}{2} + p_0|y| + p_1 y^2$$

The most unambiguous tagging occurs for large dimuon rapidity.

Main principles in the foundation of the Standard Model:

- Three groups of gauged symmetries $SU(3) \times SU(2) \times U(1)$
- Three families of quarks and leptons in representations $(3 \times 2, 3 \times 1, 1 \times 2, 1 \times 1)$
- Higgs mechanism of spontaneous EW symmetry breaking accompanied by the Higgs boson
- Mixing of flavours with the help of the Cabibbo-Kobayashi-Maskawa (CKM) and the Pontecorvo-Maki-Nakagava-Sakato (PMNS) matrices
- CP violation via the phase factors in the flavour mixing matrices
- Confinement of quarks and gluons inside hadrons
- Baryon and lepton number conservation
- CPT invariance which leads to the existence of antimatter

	\mathbf{CMS}	July 2018
	Overview of SUSY results $36 \text{ fb}^{-1} (13 \text{ TeV})$	s: gluino pair production
$ ilde{\mathbf{g}} ightarrow \mathbf{tt} ilde{\chi}_{1}^{0}$	$\mathbf{pp} \rightarrow \tilde{\mathbf{g}} \tilde{\mathbf{g}}$ $0\ell: \operatorname{arXiv:1710.11188;1704.07781,1705.04650,18}$	802.02110
	 1ℓ: arXiv:1705.04673;1709.09814 2ℓ same-sign: arXiv:1704.07323 > 3ℓ: arXiv:1710.09154 	
$ ilde{\mathbf{g}} ightarrow \mathbf{t} ilde{\mathbf{t}} ightarrow \mathbf{t} \mathbf{t} ilde{\chi}_{1}^{0}$	 <i>O</i>ℓ: arXiv:1710.11188 <i>1</i>ℓ: arXiv:1705.04673 	$\Delta M_{ ilde{t}} = M_t, M_{ ilde{\chi}^0_1} = 400 { m GeV}$ $\Delta M_{ ilde{t}} = M_t, M_{ ilde{\chi}^0_1} = 400 { m GeV}$
$ ilde{\mathbf{g}} ightarrow \mathbf{t} ilde{\mathbf{t}} ightarrow \mathbf{t} \mathbf{c} ilde{\chi}_{1}^{0}$	2ℓ same-sign: arXiv:1704.07323 0ℓ: arXiv:1710.11188	$\Delta M_{ ilde{t}} = M_t, \ M_{ ilde{\chi}_1^0} = 400 \ { m GeV}$ $\Delta M_{ ilde{t}} = 20 \ { m GeV}$
$ ilde{\mathbf{g}} ightarrow \mathbf{tb} ilde{\chi}_{1}^{\pm} ightarrow \mathbf{tbff}' ilde{\chi}_{1}^{0}$	2ℓ same-sign: arXiv:1704.07323 0ℓ: arXiv:1704.07781	$\Delta M_{\tilde{t}} = 20 \text{ GeV}$ $\Delta M_{\tilde{\chi}_1^{\pm}} = 5 \text{ GeV}, M_{\tilde{\chi}_1^0} = 200 \text{ GeV}$
$ \tilde{\mathbf{g}} \to (\mathbf{t}\mathbf{t}\tilde{\chi}_1^0/\mathbf{b}\mathbf{b}\tilde{\chi}_1^0/\mathbf{t}\mathbf{b}\tilde{\chi}_1^\pm \to \mathbf{t}\mathbf{b}\mathbf{f}\mathbf{f}'\tilde{\chi}_1^0) $ $ \tilde{\mathbf{g}} \to \mathbf{b}\mathbf{b}\tilde{\chi}_1^0 $	2ℓ same-sign: arXiv:1704.07323 0ℓ: arXiv:1710.11188 0ℓ: arXiv:1705.04650:1704.07781.1802.02110	$\Delta M_{\tilde{\chi}_{1}^{\pm}} = 5 \text{ GeV}$ $\Delta M_{\tilde{\chi}_{1}^{\pm}} = 5 \text{ GeV}, \text{ BF(tt:bb:tb)} = 1:1:2$
$ ilde{\mathbf{g}} ightarrow \mathbf{qq}(ilde{\chi}_1^\pm/ ilde{\chi}_2^0) ightarrow \mathbf{qq}(\mathbf{W}/\mathbf{Z}) ilde{\chi}_1^0$	0ℓ: arXiv:1705.04650;1704.07781,1802.02110 0ℓ: arXiv:1704.07781	${ m BF}(ilde{\chi}_1^{\pm}; ilde{\chi}_2^0)=2{:}1,\ x=0.5$
$ ilde{\mathbf{g}} ightarrow \mathbf{q} \mathbf{q} ilde{\chi}_{1}^{\pm} ightarrow \mathbf{q} \mathbf{Q} \mathbf{W} ilde{\chi}_{1}^{0}$	$\geq 3\ell: \text{ arXiv:} 1710.09154 \qquad \text{BF}(\tilde{\chi}_1^{\pm}; \tilde{\chi}_2^0) = 2:1, x = 1\ell: \text{ arXiv:} 1709.09814$	x = 0.5
~ ~0	2ℓ same-sign: arXiv:1704.07323 2ℓ same-sign: arXiv:1704.07323	$x=0.5$ $\Delta M_{ ilde{\chi}_1^\pm}=20~{ m GeV}$
$egin{array}{lll} \mathbf{g} ightarrow \mathbf{q} \mathbf{q} \chi_2^{\mathbf{s}} ightarrow \mathbf{q} \mathbf{q} \mathbf{H} \chi_1^{\mathbf{s}} \ \mathbf{ ilde{g}} ightarrow \mathbf{q} \mathbf{q} \tilde{\chi}_2^{0} ightarrow \mathbf{q} \mathbf{q} \mathbf{H} / \mathbf{Z} ilde{\chi}_1^{0} \end{array}$	0ℓ: arXiv:1712.08501 0ℓ: arXiv:1712.08501	BF = 50%
(250 500 750 1000 mass sca	1250 1500 1750 2000 le [GeV]

Selection of observed limits at 95% C.L. (theory uncertainties are not included). Probe **up to** the quoted mass limit for light LSPs unless stated otherwise. The quantities ΔM and x represent the absolute mass difference between the primary sparticle and the LSP, and the difference between the intermediate sparticle and the LSP relative to ΔM , respectively, unless indicated otherwise.

Many searches of Supersymmetry at CMS has been performed. Limits have been set. http://cms-results.web.cern.ch/cms-results/public-results/publications/SUS

Alexander Lanyov

Physics with Dimuons at the LHC

Conference on High Energy Physics 11.09.2023

- Heavy gauge boson (Z') decaying into a lepton pair
- Experimental signature:
 - \Rightarrow Single muon trigger HLT_Mu50
 - \Rightarrow High-energy muon pair ($p_T > 53 \text{ GeV}$)
 - \Rightarrow Specific high-energy lepton ID
 - $\Rightarrow Z' \rightarrow \mu \mu$
 - Introduced 3 categories (allow to improve sensitivity)
 - $A \times \varepsilon$ (1 TeV) = 89 %
 - Mass resolution (1 TeV) = 4%
 - \Rightarrow Background:
 - Irreducible Drell-Yan
 - Reducible $t\bar{t}, tW$, dibosons (estimated from MC)
 - Multijet background < 3% of the total background for dielectrons > 500 GeV (estimated from data)
 - Photon induced background negligible contribution to the limits
- Shape-based search for resonance in dimuon spectrum

- Use the updated high- p_T muon ID https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideMuonId
- Muon selection criteria:
 - \Rightarrow Reconstructed as a "global" muon and a "tracker" muon
 - $\Rightarrow p_T > 45 \text{ GeV}; \sigma(p_T)/p_T < 0.3$
 - \Rightarrow Tracker track has transverse impact parameter $d_{xy} < 2 \text{ mm w.r.t.}$ the PV
 - \Rightarrow At least one pixel hit in the muon track fit
 - \Rightarrow At least six tracker layers with hits in the fit
 - \Rightarrow At least one muon chamber hit included in the final global-muon track fit
 - \Rightarrow Matched to segments in at least two muon stations
 - ⇒ Relative tracker isolation: sum of p_T of all other tracks in a cone of $\Delta R = 0.3$ around the muon must be less than 10% of the muon's p_T
- Additional dimuon selection:
 - \Rightarrow Require opposite charge and a common vertex ($\chi^2/ndof < 10$)
 - \Rightarrow One muon matched to the HLT muon that fired the trigger
 - \Rightarrow 3D angle between the two muon momenta $<\pi-0.02$ rad

- Drell-Yan is the dominant irreducible background
 - \Rightarrow Evaluated using POWHEG; cross section scaled up using higher-order (NNLO) corrections (2.4%) from FEWZ
- The next largest background is $t\bar{t}$, also single top and dibosons
 - \Rightarrow 18% of the total background rate at $M_{\mu\mu} > 200 \text{ GeV}$
 - \Rightarrow Simulation prediction is checked with the $e\mu$ method
 - \Rightarrow Simulation prediction for charge-symmetric backgrounds is checked using same-sign dimuons
- Background from one or more jets faking muons (W+jets, multi-jet events)
 - \Rightarrow < 1% of the total background rate at $M_{\mu\mu}$ > 200 GeV
 - \Rightarrow Estimated from data using events that fail isolation cuts
- The last one is cosmic muons faking dimuons
 - \Rightarrow Detailed studies show that it can be used negligible using anti-cosmic cuts

Within the detector acceptance to reduce the model dependence.

Good agreement with FEWZ but deviations exist at low and high mass regions.

For the first time the combined $ee-\mu\mu$ double-differential xsec measurement done.

Potential constraints to PDFs are expected from these results.

RS1 model

Heavy graviton resonances are predicted by RS1 (Randall-Sundrum) model of TeV-scale gravity:

coupling constant $c=k/ar{M}_{Pl}$ \implies resonance width $\Gamma\sim c^2$

Our 4-D world can be the one of two branes embedded into the 5-D anti-de Sitter bulk space (RS scenario).

All particles of the usual matter (quarks, leptons, gauge bosons, Higgses) are considered to be localized on the brane.

Only gravitons can travel in the bulk space.

H. Davoudiasl et al., Phys. Rev. D63 (2001) 075004