

RD50, Liverpool : Meeting from 23. – 25.05.2011

Some aspects of proton implantation and subsequent thermal annealing

Werner Schustereder

Never stop thinking.

Infineon at a Glance

Business Focus

Divisions, Products and Technology

Some aspects of proton implantation and thermal annealing

Innovative semiconductor solutions for energy efficiency, mobility and security

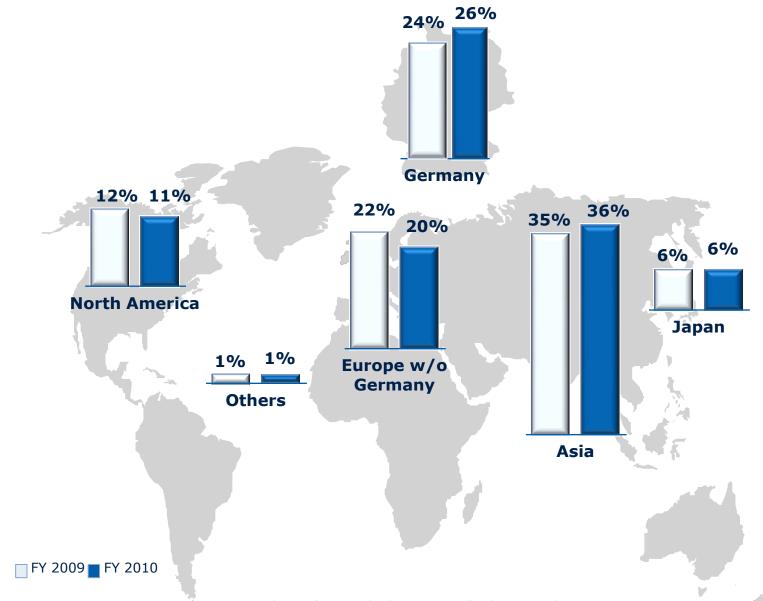
Company Presentation May 23, 2011

Infineon at a Glance

Business Focus

Divisions, Products and Technology

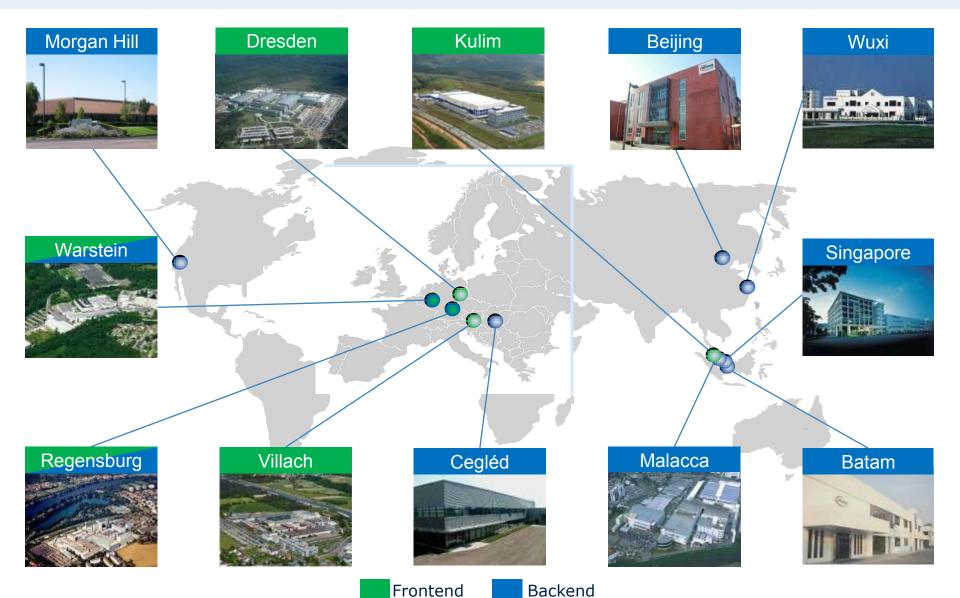
Some aspects of proton implantation and thermal annealing


The Company

- Infineon provides semiconductor and system solutions, focusing on three central needs of our modern society: Energy Efficiency, Mobility and Security
- Revenue in FY 2010*: 3.295 billion EUR
- 25,119 employees worldwide (as of April 2011)
- Strong technology portfolio with about 15,400 patents and patent applications (as of Feb. 2011)
- More than 20 R&D locations
- Germany's largest semiconductor company

*Note: Figures according to IFRS with Wireline and Wireless as discontinued operations; as of September 30, 2010

Proportional Revenue Infineon Group by Regions FY 2009 and FY 2010



Copyright © Infineon Technologies 2010. All rights reserved.

Infineon – Worldwide Production Sites Frontend and Backend

Copyright © Infineon Technologies 2010. All rights reserved.

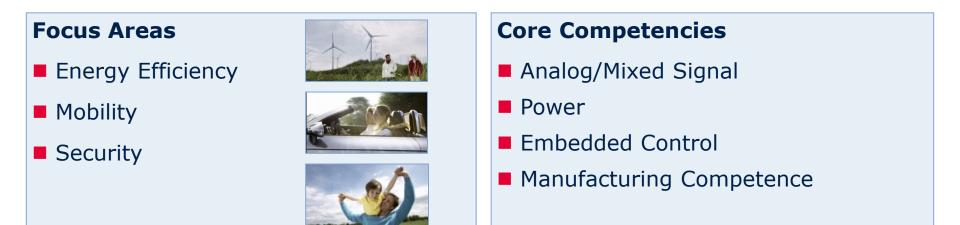
Infineon – Worldwide R&D Network (Excluding Europe)

Copyright $\ensuremath{\mathbb{C}}$ Infineon Technologies 2010. All rights reserved.

Infineon – R&D Network in Europe

Copyright © Infineon Technologies 2010. All rights reserved.

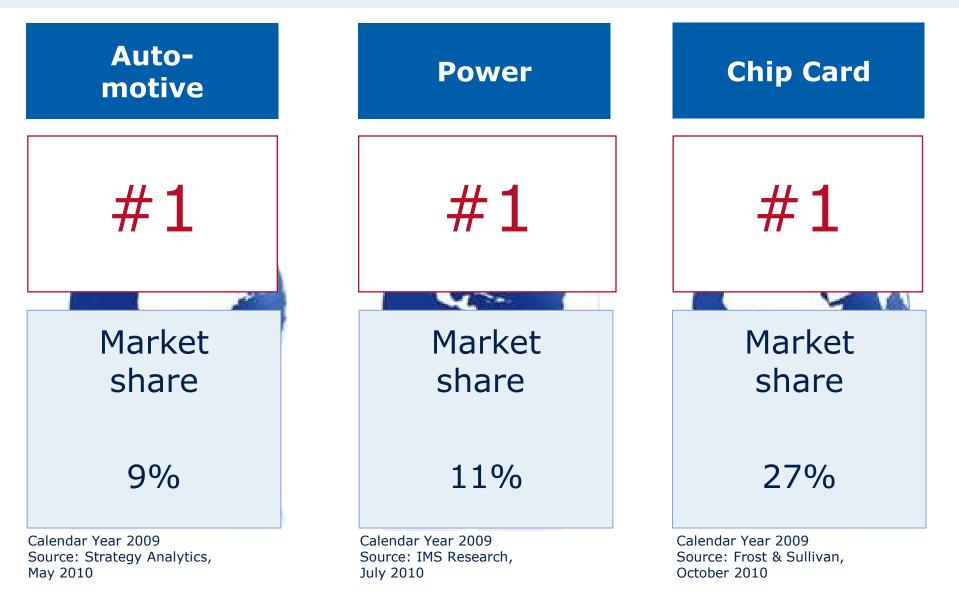
■ Infineon at a Glance


Business Focus

Divisions, Products and Technology

Some aspects of proton implantation and thermal annealing

We Focus on Our Target Markets


Our Target Markets

- Automotive
- Industrial Electronics
- Chip Card & Security

Infineon Holds a #1 Position in All Target Markets

■ Infineon at a Glance

Business Focus

Divisions, Products and Technology

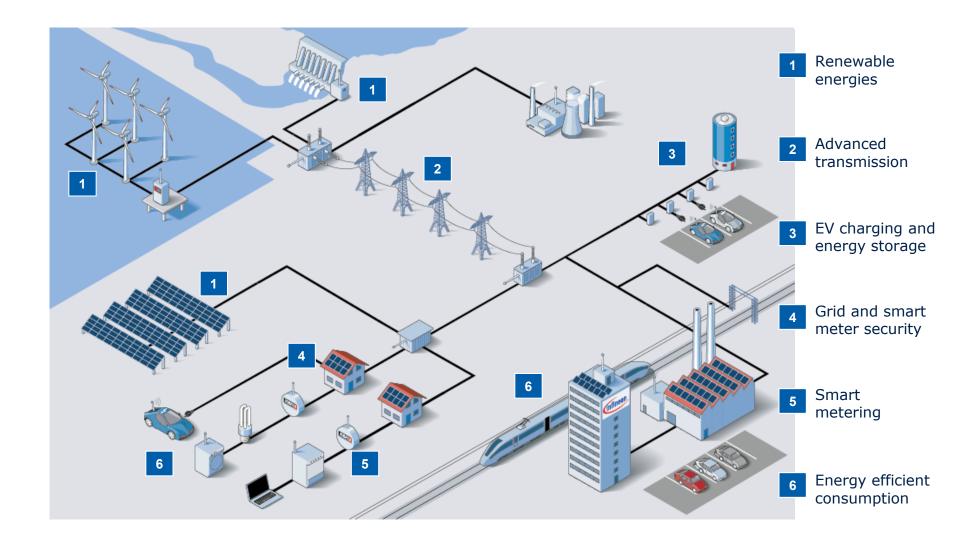
Some aspects of proton implantation and thermal annealing

We Focus on Future Business – Security Example 1: Protecting Privacy

Market trends

- Trusted Platform Modules (TPM) on 70% of enterprise notebooks and desktops; Windows 7 support
- Data protection: Encryption of files, folders, disks, messaging, digital signatures
- Strong authentication: Network access protection and additional authentication factor

Infineon's opportunities


- No. 1 supplier for TPM solutions
- Infineon's TPM security chips are first to receive global TCG and Common Criteria Certification and UK government approval

Chips for passports of USA & China

03/05/2011

We Focus on Future Business – Energy Efficiency

We Focus on Future Business – Mobility Example 3: Making Cars Cleaner

Market trends

- Dwindling energy resources
- Stricter CO₂ emission legislations
- Growing environmental awareness

Infineon's opportunities

- Infineon components are key for CO₂ reduction: Total improvement of CO₂-emission ~23 g/km
- We offer Hybrid and electric drivetrain products (HybridPACK[™])
- No electric vehicle without semiconductors: electric drive and control, battery management, onboard battery charging and power grid communication

Note: Baseline CO_2 reduction in g/km: 170 g/km on Ø EU cars

Market and Business Development 2nd Quarter Fiscal Year 2011

Business Focus

Divisions, Products and Technology

Some aspects of proton implantation and thermal annealing

Power Components for Drive Control of Train Systems

High-speed trains

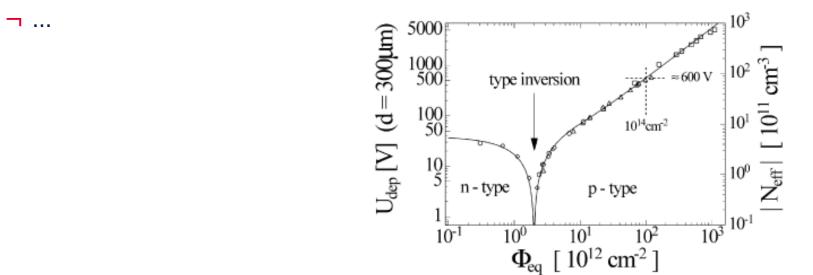
Metro trains

Infineon parts

- Power: 5 to 10MW per train
- 80 to 120 IGBT modules per train
- Semiconductor content: ~EUR 100k per train

- Power: 0.5 to 1MW per train
- 25 to 50 IGBT modules per train
- Semiconductor content: ~EUR 10k per train

- Logic on front side of chip
- Source Drain in 3D to allow switching of kV
- Suitable raw material and processing essential for excellent device characteristics
 - □ Low dark currents
 - □ High and stable break through voltage
 - □ Fast soft switching with minimal losses


□...

Several approaches to optimize processes in Si, one of them:
proton implantation in Si

Points of contact (charged) particle interaction with Si

- CMS detectors: $\sim 10^{14} 10^{16}$ particles cm⁻² / 10 years
 - Degradation of detectors radiation hardness
 - \rightarrow Investigate underlaying physical processes
 - Conversion from n-type to p-type Si
 - \neg Which types of defects are formed, what can be done about it?
 - ¬ Investigate influence of raw material ((DO)FZ, (m)CZ, [O_(i)], ...)

Points of contact (charged) particle interaction with Si

- CMS detectors: $\sim 10^{14} 10^{16}$ particles cm⁻² / 10 years
 - Degradation of detectors radiation hardness

→ Investigate underlaying physical processes...

- Conversion from n-type to p-type Si
- \neg Which types of defects are formed, what can be done about it?
- ¬ Investigate influence of raw material ((DO)FZ, (m)CZ, $[O_{(i)}]$, ...)

⊐ ...

Infineon: $\sim 10^{12} - 10^{15}$ particles cm⁻² @ every chip within $\sim 50 \mu m$

□ Try to use initial defects of proton implantation

¬ Fact: thermal treatment especially @ 350 − 500°C converts

p-type \rightarrow n-type material, but *why* **& how**?

→ Investigate underlaying physical processes...

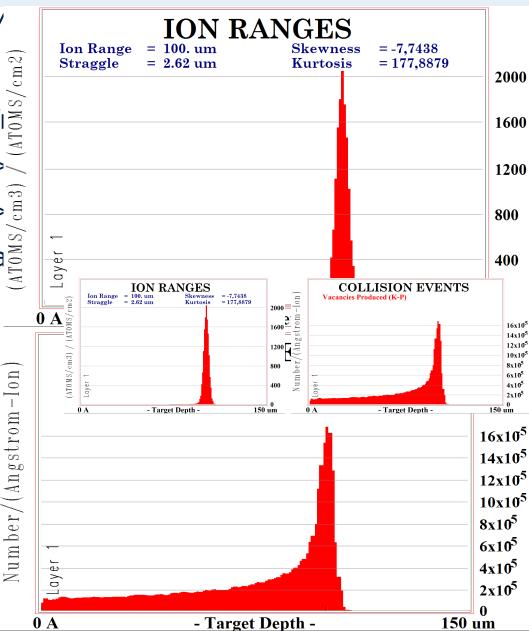
Methods

Electrical properties of donator complexes

- □ SRP doping level as f(depth in Si)
- \Box C(U) doping level, ev. as f(depth in Si)
- Hall-Effect mobility of charge carriers
- □ EBIC mobility of minority charge carriers
- Damaging behaviour as function of implant parameters
 - □ TWIN crystall damage, ev. as f(depth in Si)
- Characterisation of damage centres
 - Positron analysis Lifetime -> size of defects, ev. chemical surrounding
 - DLTS trap parameters of defect centres
 - □ FIR spec. energies of defects centres
 - PTIS energies of defects centres
 - ESR localize unpaired electrons

Methods

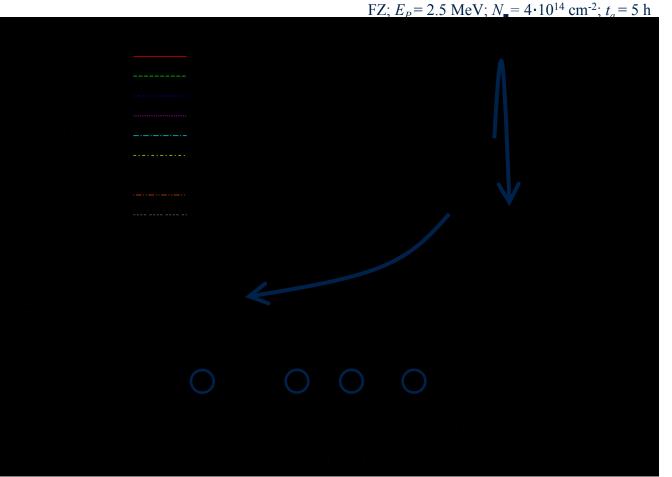
Electrical properties of donator complexes


SRP	doping level as f(depth in Si)
□ C(U)	doping level, ev. as f(depth in Si)
□ Hall-Effect	mobility of charge carriers
EBIC	mobility of minority charge carriers

- Damaging behaviour as function of implant parameters
 - □ TWIN crystall damage, ev. as f(depth in Si)
- Characterisation of damage centres
 - □ Positron analysis Lifetime -> size of defects, ev. chemical surrounding
 - DLTS trap parameters of defect centres
 - □ FIR spec. energies of defects centres
 - PTIS energies of defects centres
 - ESR localize unpaired electrons

Process in short

- High energy proton [0.2; 4
- Neutralisation of ion?
- Build-up of damage region flot of the second sec
 - Monovacancies V
 - ¬ Divacancies V₂
 - □ Passivation of raw materia
 - ¬ passivates B in p-type and
 - ¬ P in n-type Si



Annealing temperature (isochronal)

Activation of H-rel. donors above $T_a = 300 \text{ °C.}$

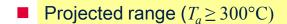
- Diffusion-like filling of the p-type penetrated range between T_a = 300 - 450 °C.
- Annealing of all generated shallow donors (SD) at T_a = 500 - 550 °C.

PhD Thesis Johannes Laven, Fraunhofer Institut Erlangen

FZ; $E_P = 2.5$ MeV; $N_{\bullet} = 4 \cdot 10^{14}$ cm⁻²; $t_a = 5$ h

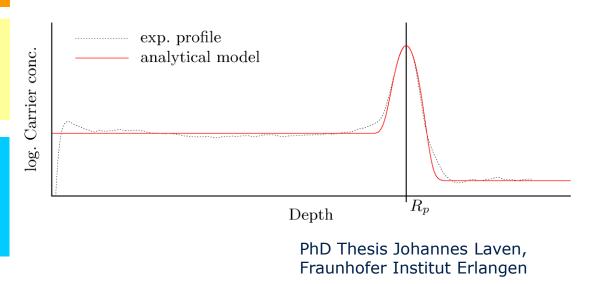
PhD Thesis Johannes Laven, Fraunhofer Institut Erlangen

Profile-simulation concept



Split profile into:

- □ Linear function with carrier concentration $C_p(T_a)$.
- □ *N*_∎-dependant `tilt'-correction necessary.


$$C_{s}(x) = C_{s}(x, E_{p}, N_{\Box} + t_{i})$$
$$= C_{0} + C_{p}\Theta(R_{p} - x) + C_{R} \cdot e^{-\frac{(R_{p} - x)^{2}}{2\Delta R_{p}^{2}}} \text{ where}$$
$$C_{R} = a(E_{p}) \cdot b(T_{a}) \cdot N_{\Box}^{\gamma}$$

Gaussian at R_p with amplitude $C_R(T_a)$.

- <u>p-type Si</u>: hydrogen present as H⁺;
 - \Box rapid diffusion (~10¹⁰cm⁻²s⁻¹ @ RT)
 - \Box T < 500°C: diff. impeded by trapping at acceptor ions
 - \Box T > 500°C: diff. by rapid interstitial motion
- <u>n-type Si</u>: H⁺ and H⁰, depending on dopant density
 - □ D[H] considerably much lower compared to p-type Si
 - □ T < 150°C: donor-Si-H bonds can form impeding H motion & passivating donors
- Molecule formation can occur
 - H₂ much less mobile than atomic species and generally breaks up rather than diffuse
 - \Box D[H₂] in n-type > D[H₂] in p-type

Process in short

COLLISION EVENTS

16x10

14x10

8x10

6x10⁵ 4x10⁵

2x10

150 um

- High energy proton [0.2; 4MeV] approaches Si Wafer
- Neutralisation of ion?
- Build-up of damage region from surface till end of range, f.e.
 - ¬ Monovacancies V -> anneal out immediately @ RT; → VO
 - \neg Divacancies V₂ -> stable, may decorate with impurities

Passivation of raw material doping – amphoteric character of H

Ion Range

Straggle

ION RANGES

- Target Depth

= -7,7438

2000

1600

1200

800

- ¬ passivates B in p-type and also
- ¬ P in n-type Si
- Peak of H inside Si bulk
- Anneal ε [350, 500]°C \rightarrow diffusion of H, enhanced D[O] \leftrightarrow D[H]
 - □ Growth of oxygen thermal donors (OTD)
 - \Box Creation of different types as $f_{(Temp.)}$ of hydrogen donors
- Carrier concentration after anneal ~1% of implanted H dose

Mechanism for enhanced D[O]

H: highly mobile, f(T)

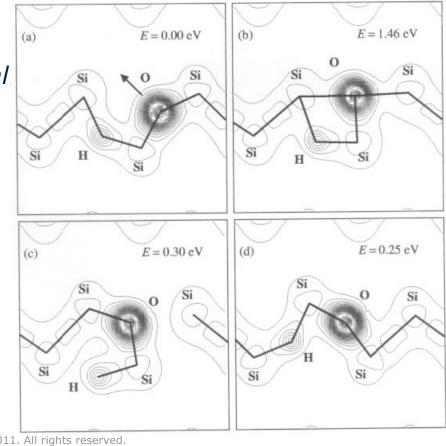
O diffusion rate can be enhanced by orders of magnitude due to lowering the saddle point energy in Si-O-Si transition from ~2.55 eV to ~1.46 eV with nearby atomic H

□ Calculations; f.e. MD by *Capaz et al*

a) Initial ground state configurationwith BC O and H

b) Saddle-point configuration with

max. $E_{pot} = 1.46 \text{ eV}$ above the gr.st.

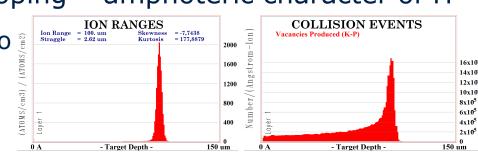

c) Metastable state with 0.30 eV

with H-saturated Si-Si broken bond

d) Final ground-state configuration

with BC O and H

Oxygen diffusion in turn interacts with hydrogen and decreases D[H]


Process in short

- High energy proton [0.2; 4MeV] approaches Si Wafer
- Neutralisation of ion?
- Build-up of damage region from surface till end of range, f.e.
 - ¬ Monovacancies V -> anneal out immediately @ RT; → VO
 - \neg Divacancies V₂ -> stable, may decorate with impurities

Passivation of raw material doping – amphoteric character of H

- ¬ passivates B in p-type and also
- ¬ P in n-type Si
- Peak of H inside Si bulk

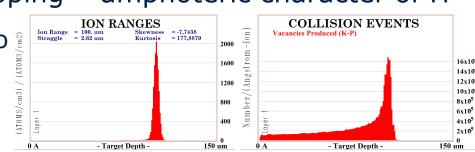
■ Anneal ε [350, 500]°C \rightarrow diffusion of H, enhanced D[O] \leftrightarrow D[H]

□ Growth of oxygen thermal donors (OTD)

 \Box Creation of different types as $f_{(Temp.)}$ of hydrogen donors

Carrier concentration after anneal ~1% of implanted H dose

Configurations of O_i in Si ntineon Oxygen thermal donors (OTD) Formation of OTD: Si 🔍 electrical active ring structure: \Box electrical inactive: **(a)** \Box Growth of ring structure, up to ~ 8 O atoms involved: □ Rings with more than 8 O atoms are electrically inactive □ Concurring structure: "di-Y-lid", also el. inactive


Process in short

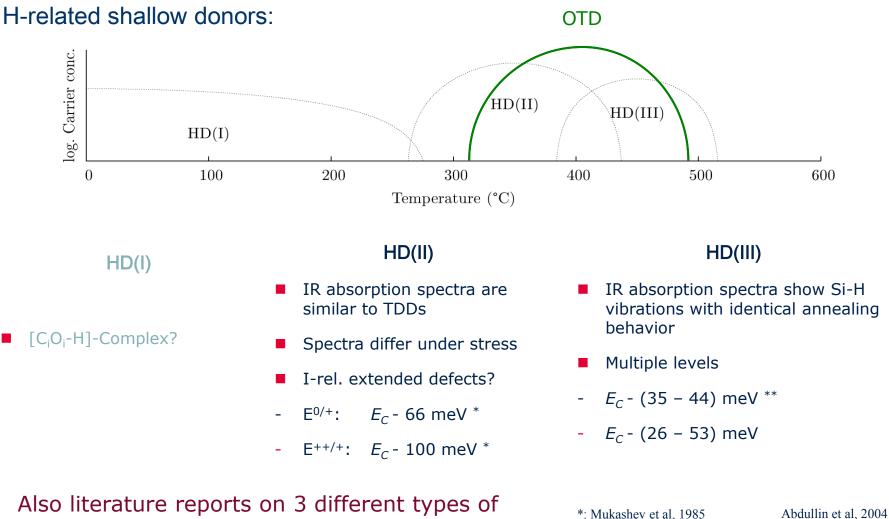
- High energy proton [0.2; 4MeV] approaches Si Wafer
- Neutralisation of ion?
- Build-up of damage region from surface till end of range, f.e.
 - ¬ Monovacancies V -> anneal out immediately @ RT; → VO
 - \neg Divacancies V₂ -> stable, may decorate with impurities

Passivation of raw material doping – amphoteric character of H

- ¬ passivates B in p-type and also
- ¬ P in n-type Si
- Peak of H inside Si bulk

■ Anneal ε [350, 500]°C \rightarrow diffusion of H, enhanced D[O] \leftrightarrow D[H]

□ Growth of oxygen thermal donors (OTD)


 \Box Creation of different types as $f_{(Temp.)}$ of hydrogen donors

Carrier concentration after anneal ~1% of implanted H dose

Copyright © Infineon Technologies 2011. All rights reserved.

Different types Hydrogen Donors (HD)

donors; e.g. Tokuda et al., Hatakeyama et al.

**: Hartung and Weber, 1993 Markevichetal, 1998

Creation of Hydrogen Donors (HD)

- Fact: concentration of donors ~1% of implanted H
 - Open questions
 - ¬ Correlation (Transition?) of STD with OTD unclear
 - ¬ Correlation of STD with O concentration [also Lit: f.e. Navarro]
 - ¬ Possible complex influence of N concentration [Hartung]
 - ¬ Role of C unclear

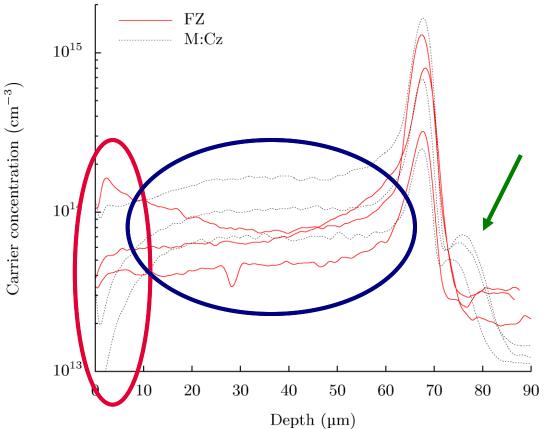
*N*_a-dependency more FZ pronounced in mCZ 10¹⁵

FZ: stays longer @ *p*type for lower Temps / shorter annealing times

Penetrated range:

mCZ: shows higher resistance values for lower Temps / shorter annealing times

Shoulder:


Surface:

in FZ only visible for very high $N_{\rm B}$

Furthermore: Carrier concentration non-linear with proton dose > ~4E14

Copyright © Infineon Technologies 2011. All rights reserved.

 $E_P = 2.5 \text{ MeV}; T_a = 470 \text{ °C}; t_a = 5 \text{ h}$

Summary

- Some CC profiles of proton implanted Silicon have been shown
- Dependencies examined are mainly
- $\Box E_p = 0.5 4.0 \text{ MeV}$ $N_a \sim 10^{13} 10^{15} \text{ cm}^{-2}$
 - $\Box T_a = 300 550 \,^{\circ}\text{C}$ $t_a = 0.5 30 \,\text{h}$

Outlook

Common interest: Investigate & understand underlaying physical processes of particle (proton) irradiation in Si

- Intrinsic fundamental interest
- □ Avoid detector degradation (CERN)
- Use defect properties to tailor semiconductor properties (Infineon)

Methods

Electrical properties of donator complexes

SRP	doping level as f(depth in Si)
□ C(U)	doping level, ev. as f(depth in Si)
□ Hall-Effect	mobility of charge carriers
EBIC	mobility of minority charge carriers

- Damaging behaviour as function of implant parameters
 - □ TWIN crystall damage, ev. as f(depth in Si)
- Characterisation of damage centres
 - □ Positron analysis Lifetime -> size of defects, ev. chemical surrounding
 - DLTS trap parameters of defect centres
 - FIR spec. energies of defects centres
 - PTIS energies of defects centres
 - ESR localize unpaired electrons

Outlook

Common interest: Investigate & understand underlaying physical processes of particle (proton) irradiation in Si

- Intrinsic fundamental interest
- Avoid detector degradation (CERN)
- Use defect properties to tailor semiconductor properties (Infineon)
- Techniques for characterisation

ENERGY EFFICIENCY MOBILITY SECURITY

Innovative semiconductor solutions for energy efficiency, mobility and security.

