CCE Measurements of Irradiated HPK-ATLAS07 n-on-p Sensors

18th RD50 Workshop, Liverpool 2011

Adrian Driewer, Karl Jakobs, Michael Köhler & Ulrich Parzefall

Freiburg University

24. May 2011

The HL-LHC Upgrade

Fluences in this irradiation campaign:

- Particle composition corresponding to 3 specific radii
- Fluences calculated for $3000\,\mathrm{fb^{-1}}\times\mathrm{safety}$ factor 2
- 2 detectors at each fluence
- Additional set of sensors measured at Liverpool to cross-check the results

Mixed Irradiation Fluences

Pion irradiation

- Performed at PSI (Villigen) with 280 MeV Pions
- 16 days beam time for a maximum fluence of $1.73 \times 10^{15} \, \pi/\mathrm{cm}^2$
- Thanks to T. Rohe and M. Glaser

Proton irradiation

- Performed at KIT (Karlsruhe) with 25 MeV Protons
- Thanks to A. Dierlamm and W. de Boer

_	radius	pion dose	proton dose
		$9.3 imes 10^{14} n_{eq}/cm^2$	
		$1.2 imes 10^{15}\mathrm{n_{eq}/cm^2}$	
	15.1 cm	$1.4 imes10^{15}\mathrm{n_{eq}/cm^2}$	$2.6 \times 10^{14} n_{eq}/cm^2$

Sensors Under Test: HPK-ATLAS07 Series

- Prototype detectors for the ATLAS Upgrade
- N-in-p strip sensors
- A detailed description can be found in Y. Unno et al., NIMA 636 S.24-30

material	FZ-silicon, p-type
size	$1~ ext{cm} imes 1~ ext{cm}$
thickness	320 µm
number of strips	104
length of strips	0.8 cm
pitch	74.5 µm
coupling	AC
strip isolation	p-stop
zone	3

Zone 3 Narrow Common

Measurement Setup

- Sr-90 β -Source with 37 MBq leads to a measurement rate of up to 300Hz
- ullet Cooling with a commercially available freezer to \sim -20°C
- Additional liquid nitrogen cooling for measuring at -60°C

Charge Collection

after pion irradiation:

after pion and proton irradiation:

- Deposited charge in 320 μm silicon: \sim 24 ke $^-$
- Not all detectors measured yet
- Next step will be the neutron irradiation

Annealing Sensors at Different Temperatures

Annealing at Different Temperatures

Accelerated Annealing

$$\begin{array}{ccc} \frac{\tau_a}{\tau_{ref}} & = & \exp\left[-\frac{E_a}{k_B}\left(\frac{1}{T_{ref}}-\frac{1}{T_a}\right)\right] \\ \tau_a\&\tau_{ref} & \widehat{=} & \text{time constant} \\ E_a & \widehat{=} & \text{activation energy} \\ T_a\&T_{ref} & \widehat{=} & \text{annealing-} \& \text{ reference temperature} \end{array}$$

Motivation:

- The scaling is often applied in annealing studies. Usually one uses the activation energy that was determined in N_{eff} measurements.
- G. Casse found indications that the scaling is not generally applicable to CCE measurements

Samples:

- 3 HPK sensors were annealed at 22.5°C, 40°C und 60°C
- All of them were irradiated with the same dose: $1.1 \times 10^{15} \, n_{eq}/cm^2 \, 25 \, MeV$ Protons
- Estimated $V_{fd} \sim 900 \,\mathrm{V}$

Charge Collection

annealing at room temperature:

- Annealing @ 40°C scaled to 22.5°C using $E_a=1.31\,\mathrm{eV}$ from long term annealing
- Annealing is beneficial for the first 50 h @ 40°C
- Beginning charge multiplication after 280 h for $V \ge 900 \,\text{V}$?

Normalised Signal

annealing at room temperature:

at 40°C:

- Data points are normalised to a measurement before the first annealing step
- Significant increase in collected charge for V < 900V

Signal-to-Noise Ratio

annealing at room temperature:

at 40°C:

• Shape similar to CCE curve ⇒ noise did not change significantly

Leakage Current (scaled to 20°C)

annealing at room temperature:

at 40°C:

- Slight increase in leakage current after 180h @ 40°C for high voltages
- Could be another indication of carge multiplication

Conclusion

Mixed Irradiation

- The pion and proton irradiation steps were done
- Neutron irradiation in Ljubljana will be the last step

Accelerated Annealing

- First indication of charge multiplication after 280h @ 40°C
- Will we see the same effect after 200 days at room temperature?
- More room temperature measurements need to be done
- An annealing series with an identical sensor will be done with an annealing temperature of 60°C
- No deviation in the scaling found so far