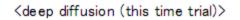

The CMS HPK campaign - An overview

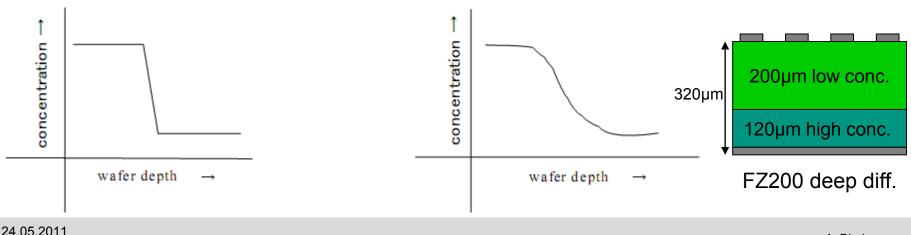
Alexander Dierlamm

INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK

Helmholtz Alliance

CMS Strategy

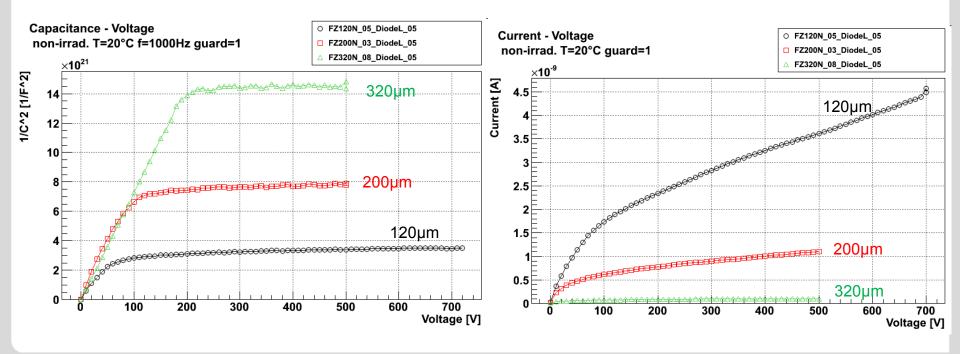

- Most of the volume of a future Tracker will be equipped with planar silicon sensors
 - We have started a survey of available silicon materials to probe their individual limits
 - One wafer layout has been developed and the various materials are processed with this mask by the same producer, which allows well defined comparisons
 - We investigate the properties of several layout options for strip, strixel and pixel sensors
 - A well defined measurement plan has been worked out and participating institutes have been inter-calibrated to guarantee comparable measurements
 - For the test wafers a producer was chosen, that can provide the large quantity and high quality we need → "HPK campaign"
 - Measurements are complemented by device simulations
- In parallel, there are R&D projects on potential additional candidates for the most inner layer(s)
 - 3D silicon sensors (production with Sintef, FBK, CNM)
 - Diamond sensors


HPK campaign – Materials

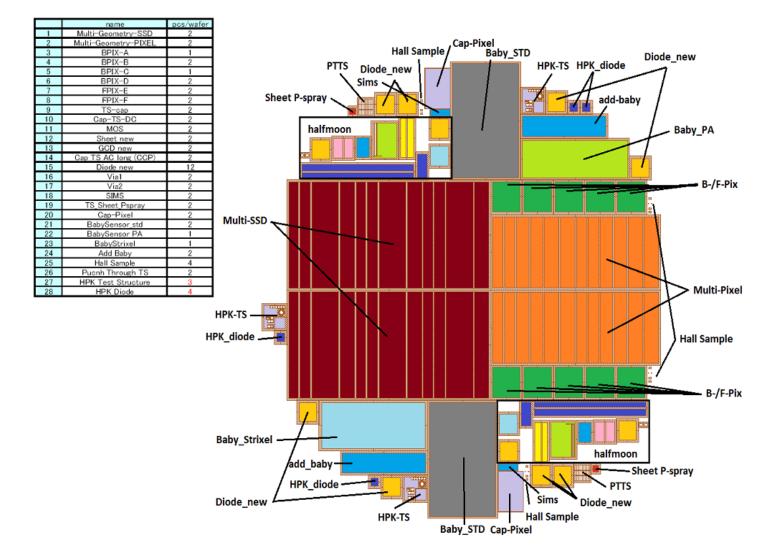
- Initially ordered production of 126 wafers delivered completely
- Part of thin FZ wafers came "deep diffused" showing some features, which makes a comparison with physical MCz difficult
- "Deep diffused" wafers are about 20% cheaper than 200µm thin wafers! We will investigate this option...
- Additional material ordered lately and expected Sept./Nov.

<carrier substrate>

	n-type	p-type (p-stop)	p-type (p-spray)
FZ320	6/6	6/6	6/6
FZ200 deep diff.	6/6	6/6	6/6
FZ120 deep diff.	6/6	6/6	6/6
MCz200 physical	6/6	6/6	6/6
Epi100	2 / 6	6/6	6/6
Epi70	4 / 0	-	-
Epi50	6/6	6/6	6/6
FZ200 deep diff. & 2.metal	6/6	6/6	6/6
FZ200 physical	0 / 6	0/6	0 / 4
FZ120 on carrier	0 / 6	0/6	0 / 4

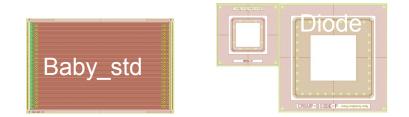


Investigation of "deep diffused" material

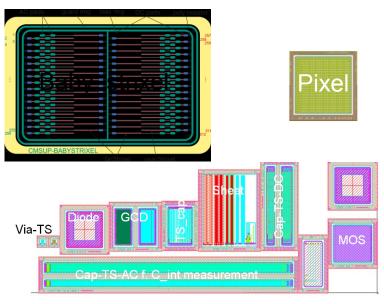


- Unusual behaviour of thin "deep diffused" material
- Well seen in IV and CV of diodes
- Thin diodes show non-abrupt depletion behaviour
- Volume generated currents are higher than in thick diodes
 - But currents are still very low (<1.5µA/cm³ @ 500V)!</p>

HPK wafer layout

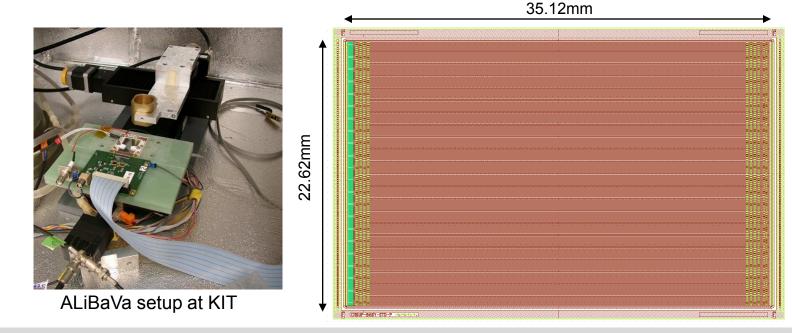


5



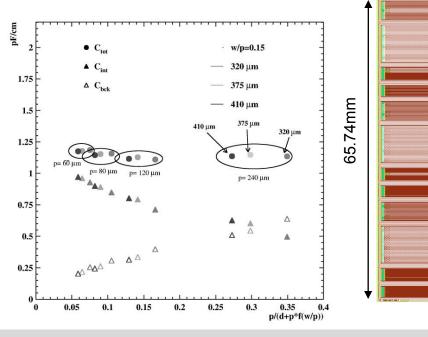
Structures and goals

- Diodes
 - Material characterization and add. annealing studies
 - Measure IV, CV, CCE, TCT, DLTS, TSC, photo cond., …
- Mini sensor I (Baby_std)
 - Material characterization, charge collection
 - Measure IV, CV, strip para., CCE, e-TCT
- Mini sensor II (Add_Baby)
 - Material characterization using different radiation sources
 - Measure IV, CV, Lorentz angle
- Sensor with integrated PA (Baby_PA)
 - Layout study: spare glass PA
 - Measure strip capacitances, CC, signal coupling
- Sensor with short strips and edge read-out (Baby_strixel)
 - Layout study: read-out lines from inner strip to outer edge
 - Measure strip capacitances, CC, signal coupling
- Test structure field (TS)
 - Process qualification
 - Measure many things incl. SIMS, SRP, SEM, …
- Pixel
 - Real size pixel sensor for CMS ROC footprint
 - Measure IV, efficiency, σ
- Multi-geometry strip (30mm) sensor (MSSD)
 - Layout study: strip width and pitch variations
 - Measure CV, IV, Cint, S/N, σ
- Multi-geometry pixel (1.25mm/2.5mm) sensor (MPix)
 - Layout study: pixel length and pitch variations
 - Measure CV, IV, Cint, R_{poly}/R_{PT}, S/N, σ



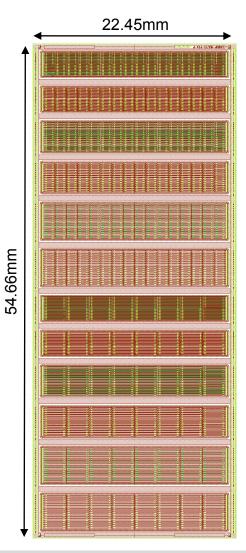
24.05.2011

Baby_std


- A "standard" mini strip sensor with 256 strips and 80µm pitch
- Evaluation of all electrical parameters
- Measurement of charge collection with beta-source and LHC-like readout system
- Edge-TCT can provide E-field and charge collection vs. thickness profile on sub-set

Multi-SSD

- Contains 12 regions with different strip sensor layouts
- This is a replica of the famous test-structure, which brought us the conclusion that the total strip capacitance is a function of w/p only (demonstrated for 0.2<p/d<0.8 and 0.1<w/p<0.6) [CMS Note 2000/011]</p>
- This time we check thinner material (0.2<p/d<2.0) and higher irradiation!</p>


REGION NoPITCH	Ρ	WP	WAL	D	E	L
1-120	120	18	26	60	60	3820
2-240	240	36	44	120	60	7660
5-120	120	24	32	60	60	3820
6-240	240	48	56	120	60	7660
9-120	120	36	44	60	60	3820
10-240	240	72	80	120	60	7660

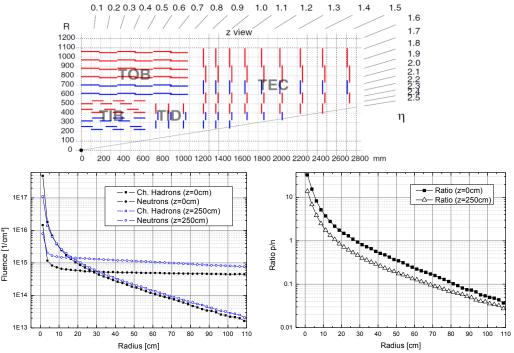
REGION NoPITCH	Р	WP	WAL	D	E	L
3-80	80	12	20	60	60	2580
4-60	60	9	17	50	50	1940
7-80	80	16	24	60	60	2580
8-60	60	12	20	50	50	1940
11-80	80	24	32	60	60	2580
12-60	60	18	26	50	50	1940

8

Multi-Pixel

- Contains 12 regions with different pixel/strixel layouts
- Pixel size in the regime of pixellated p_T layers
- Study inter-pixel capacitances and different biasing schemes
- Special PA to read-out with APV25 in beam test

	PIXEL Length	Pitch	bias type	No. of pixels	Pixel size (um)	Lateral P-P gap
1		80	Poly	32×16	20×1160	60
2			PT	32×16	2001100	00
3	1250	100	Poly	32×16	25×1160	75
4	1200	100	PT	32×16	2001100	,,,
5	4	120	Poly	32×16	30×1160	90
6		120	PT	32×16	00,1100	
7	1	80	Poly	32×8	20×2410	60
8	4		PT	32×8		
9	2500	100	Poly	32×8	25x2410	75
10			PT	32×8		
11	-	120	Poly PT	32×8 32×8	30×2410	90



Irradiation fluences

- Need to understand damage by neutron, charged hadron and mixed particle irradiation
- Fluences chosen for conditions at various radii
- Neutron fluence slightly adapted to get info on increasing neutron fluence
- Annealing steps chosen to cover initial short term and long term annealing:

Step	1	2	3	4	5	6	7
Temp. / °C	60	60	60	60	80	80	80
Time / min	20	20	40	76	15	30	60
∑t@60° C∕min	20	40	80	156*	312	624	1248
$\sum t @ 20^\circ C/d$	4.5	8.1	15.6	31.8	92.8	243	496

^{* 156}min at 60°C ~ 15min at 80°C

		z=0cm			z=250cm			
Radius	Ch. Hadrons	Neutrons	Ratio	Ch. Hadrons	Neutrons	Ratio		
40cm	2,8	5,2	0,54	3,4	12,2	0,28		
20cm	9,5	5,9	1,61	11,1	14,2	0,78		
15cm	15,4	6,2	2,48	17,4	14,4	1,21		
10cm	31,0	7,0	4,43	32,5	15,2	2,14		
5cm	125,7	10,0	12,57	101,4	18,5	5,48		

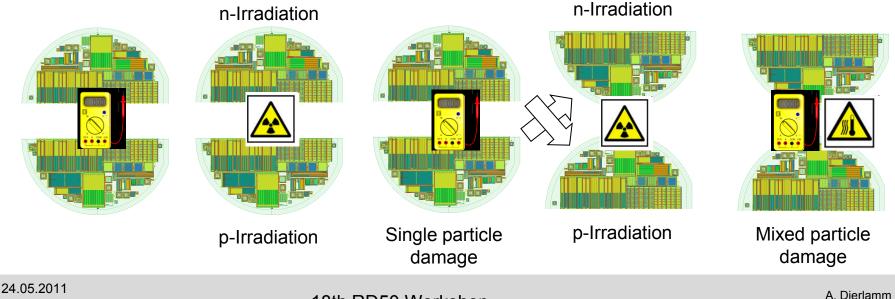
Radius	Protons	Neutrons	Ratio p/n	Total	Material
40cm	2,5	4	0,63	6,5	≥ 200µm
20cm	10	5	2,00	15,0	all
15cm	15	6	2,50	21,0	all
10cm	30	8	3,75	38,0	all
5cm	130	12	10,83	142,0	< 200µm

A. Dierlamm

Institut für Experimentelle Kernphysik

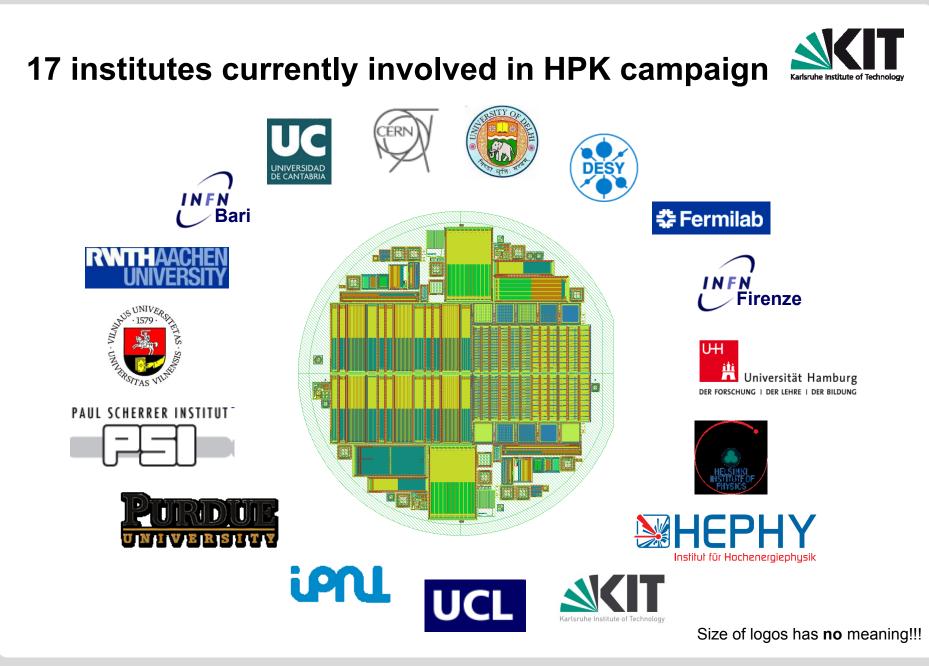
24.05.2011

Karlsruhe Institute of Technology


Irradiation sequence

- Initial measurements of all parts
- Irradiation with n/p
- Short annealing 10min @ 60°C
- Measurement of devices
- Irradiation with p/n
- Short annealing 10min @ 60°C
- Measurement of devices for several annealing steps

Proton cyclotron, KIT


TRIGA reactor, Ljuljana

Institut für Experimentelle Kernphysik

11

18th RD50 Workshop

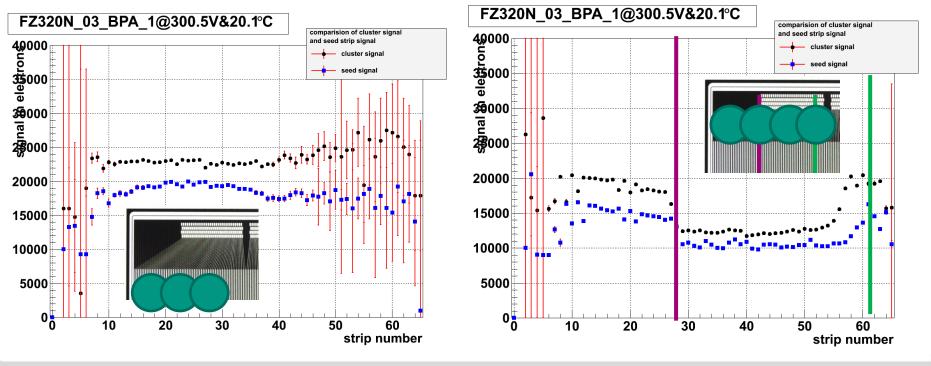
Latest activities

Initial qualification of structures and materials ongoing

- Most participating institutes perform measurements routinely
- Measurement results are being uploaded to a dedicated database (essential for more than 5000 pieces!)
- Deep diffusion material investigated on diodes before and after irradiation (protons and neutrons each 1e14n_{eq}/cm²)
 - \rightarrow Next talks by Joachim Erfle (UHH) and Robert Eber (KIT)
 - \rightarrow Talk from Alexandra Junkes (UHH) yesterday
- Complete mixed irradiation scenario exercised on FZ part of Add_Baby, which will be used for dedicated Lorentz angle studies
 - → Talk by Andreas Nürnberg (KIT) at 15:00
- First beam test with MSSD and MPix structures successfully performed at FNAL
 - \rightarrow Talk by Panja Luukka (HIP) at 14:40
- Special strixel read-out and PA on sensor being investigated (coupling of routing lines and PA layouts will also be studied on 2. metal wafers)

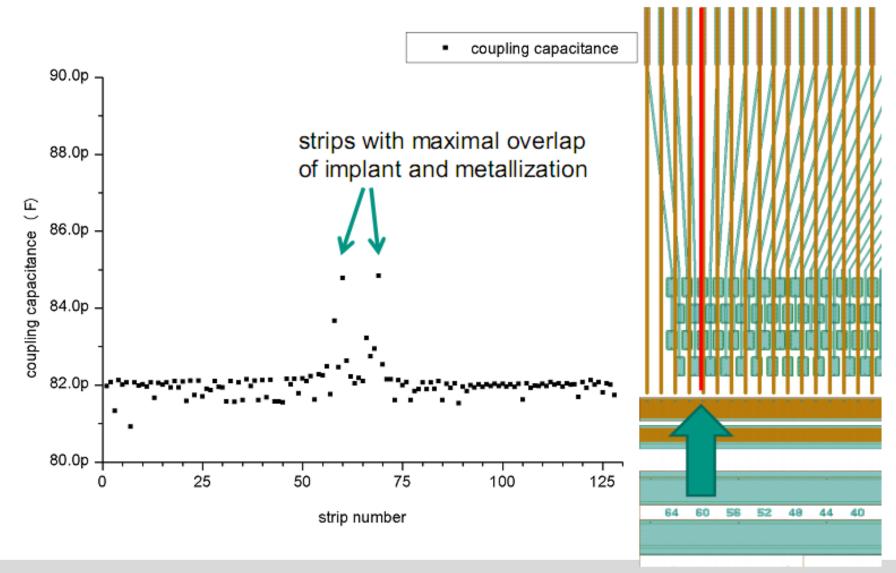
13

BACKUP


24.05.2011

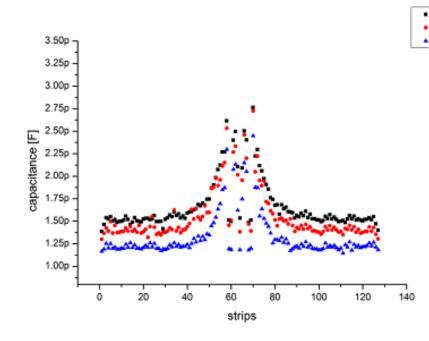
18th RD50 Workshop

Baby_PA


- Signal almost homogeneous when charge is generated (by Sr90 source) on normal region
- Strong signal drop (~30%) when charge is generated in PA region (~2.5mm), where signal is lost to other channels due to the crossing read-out metallization

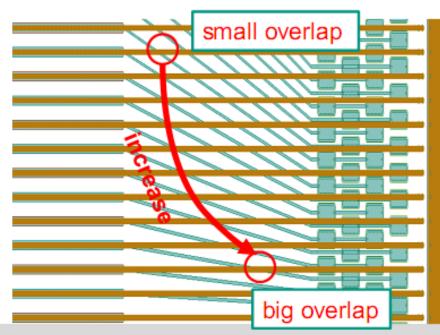
18th RD50 Workshop

Coupling capacitance



Institut für Experimentelle Kernphysik

Interstrip capacitance

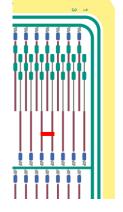


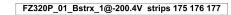
Possible explanation:

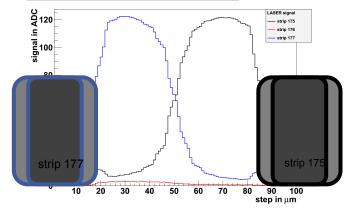
- additionally a parasitic capacitance over the coupling oxide is measured
- with increasing overlap of routing and implantation of adjacent strips the measured coupling capacitance increases

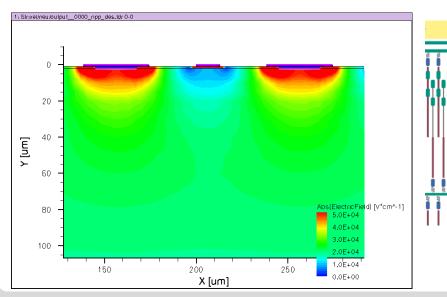
320N 200N 120N

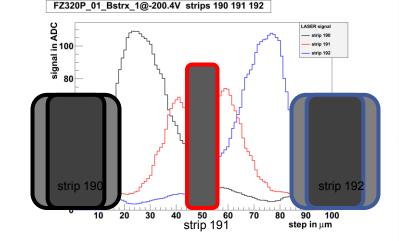
- Pictured: n-type sensors
- Other types (p/y) show the same behavior
- C_int increases with thickness



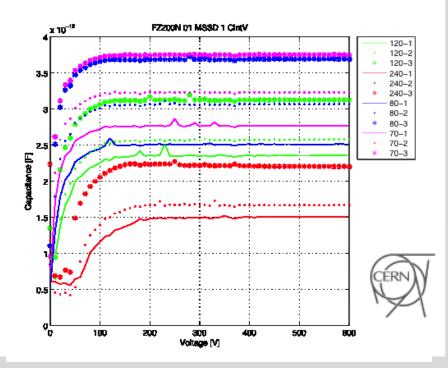

Institut für Experimentelle Kernphysik




Baby_strixel


- Scan with IR laser between two strips
- Scan in far region shows no induced charge on near implantation
- Scan in near region shows a strong induced charge on read-out metal running between near implantation
- Signal is high enough to mimic charge generation in far region → more advanced cluster algorithm needed!

24.05.2011


18th RD50 Workshop

MSSD testing

- IV, CV and Cint on all 12 regions of sensor automatized by switching matrix and ready for cold measurements in insulated box
- Additional beta setups are being setup to measure S/N and charge sharing
- Available at Florence and CERN; FNAL setting up

19

18th RD50 Workshop

Institut für Experimentelle Kernphysik

A. Dierlamm

