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Outline
e Carrier capture (MW-PCD/E) and emission (I-V) lifetime variations
e Barrier capacitance variations with fluence (BELIV)

e Time and spectral resolved priming of BELIV transients

e Summary



Recombination lifetime during and after irradiation
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Carrier capture-recombination-generation lifetimes (simple S-R-H approach)
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Traps with exp distributed levels

Redistribution of carriers via interaction of traps
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S-R-H is limited by conditions:

i)

iv)

M<<n,. then traps are filled by dn, without change in n,,

ii) single type centers dominate
iii) traps do not interact
charge on traps can be ignored relatively to dopants one

Thus, validity of S-R-H conditions should be estimated in applications

A.Rose. Concepts in photoconductivity and allied problems.
Interscience Publishers, John Wiley & Sons, New York-London, 1963.



Carrier recombination lifetimes (for M>>n,) Single-species (type) traps
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Carrier recombination=capture lifetimes (for M>>n,)

Single-species (type) traps
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Carrier recombination lifetimes for M; ;>n,
multi-valency(i)/multi-species(s) centers

Interaction of the whole system of centers appears due to carrier redistribution through bands, by
inter-center recombination (capture-emission) and via charging /configurational transforms of defects

System neutrality is supported by free and localized charges/fields.
Relaxation is long and complicated.
It is similar to the random-walk processes in disordered materials.

S.Havlin and D.Ben-Avraham, Advances in physics 51, 187 (2002).
L.Pavesi, J. Appl. Phys. 80, 216 (1996).

The stretched-exponent model is widely used U,y =Uexp[—(t/7,.)4

E. Gaubas, S. Jur§enas, S. Miasojedovas, J. Vaitkus, and A. Zukauskas
JOURNAL OF APPLIED PHYSICS VOLUME 96, NUMBER 8 15 OCTOBER 2004

1 % CPC excited with 355 nm light pulse of 30 ps experimental decay
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A single lifetime parameter z,, can be extracted only when

Relaxation is similar to multi-exponential in any ; .
stretched-exponent time scale is employed

narrow display segment
Different techniques may give different lifetime values



Carrier generation/emission lifetime (for M>>n,)
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« Examined MW-PCT characteristics imply prevailing of intricate system of
defects and reduction of majority carriers. The recombination capture lifetimes
become shorter than dielectric relaxation time.

- Carrier emission lifetime decrease (increase of leakage current — at Urin I-V),

follows capture lifetime reduction (increase of serial resistance R~1/no - at Ur

::||1 I-V), and both manifest a close to a linear decrease with enhancement of
uence

Items to clarify:
e Whether diode/detector is functional under heavy irradiations?

« What is a system of defects and levels, which governs extraction of carriers
(Ur) and state of material?

e Which models are acceptable for prediction of charactreristics?

The Barrier Evaluation by Linearly Increasing Voltage (BELIV) transient technique
has been employed to clarify, how a reduction of carrier capture lifetime
and emission affects junction and material



BELIV technique
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Variations of BELIV transients with

temperature and priming by steady-state IRBI
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Priming by IR illumination increases n,and

barrier capacitance observed in BELIV transients
restores a junction but enhances leakage current
when fast carrier capture/emission is present

Amplitude (a.u.)

10 .
16 2 - ’l
®=10" n/cm T=203 K
8f U,=8V b~ |
-7 I
T=273 K
6r -7 1
L S = -
4 g W v e eouosoone: Y .......... : '57
T=260 K = »=10" n/cm 1
20, T=172K T
a
OE L L L
0.0 0.4 0.8 1.2
t (us)

Reduction of temperature increases (t,) and
decreases space charge generation current,
however, Cy,,=C at Uc<0.3 V

U, (mV)
0 50 100 150 200 250 300 c
30 T T T T T T T 1-5
._
g 25_"[ L Tsh\nzf(uuc]1'4
@ 20+ )
> 13 &
-g 151 |4~ £
=T SONTE T 12
Q. y T"\'
L= - - o 11,1
I L L 10
0 4 8 12
t (us)

Short carrier capture lifetime reduces n,=Np and increases

a serial resistance of ENR. Supply of majority carriers from
rear electrode by dc U, priming (due to shrinkage of depletion
w width, forward current) restores a junction.
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Combined priming of BELIV transients
by temperature reducing (increased 7,) and by IR illumination
(ny) leads to restore of a junction




Barrier capacitance as a function of fluence extracted at 300 K
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C-V’s as a function of fluence at 100 kHz and 300 K

displacement in barrier capacitance is controlled by (LRC) measurements of
phase shift for the ac test signal at fixed frequency in routine C-V
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1. Reference measurement for diodes irradiated with > 1E13 n/cm2 ‘Hs -

At the beginning of each measurement cycle, a reference mea-
surement is performed. The measured value serves as reference

for the subsequent four measurements.

2. Voltage measurement:
3. Voltage measurement:
4. Current measurement:

5. Current measurement
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The following phase diagrams and formulas show the mathematic basics for
internal calculation of the component value.

Vi
Vq 'S voltage

I: current

V1,V2: 0°-voltage, 90°-voltage

The phase angle between I and V is ¢.
The phase angle between I and V1 is a.

In the diagram the phase relation between | and V happens to be a lossy induc-
tance.

In each measurement cycle, the following components are determined:

Vp, Vaq, Ip, Iq.

The series resistance and reactance are calculated from these components.
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Quality factor: ~ Q = tang = 1/D = ';:' @)

Dissipation factor: D = tand = 1/Q = |)F2TS| (4)

The magnitude of Q and the sign of Xs determine which parameter of the compo-

nent is dominant,
Xs positive = inductive
Xs negative = capacitive

The formulas for the various parameters are as follows:
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 Barrier partially recovers by no priming with IR, dc UF and combined priming with
te/mpezzrature (emission lifetime) decreasing only in diodes irradiated with fluence of <1014
n/cmz2,

 Short carrier capture and emission times determine low barrier capacitance (capability to
to collect charge (transient) at fixed voltage) and large space charge generation (leakage)
current in heavily irradiated diodes.

e The space charge generation current prevails in heavily irradiated diodes over barrier
charging (displacement, which is controlled by measurements of phase shift for the ac test
signal in routine C-V), therefore applicability of C-V technique is doubtful for control of
heavily irradiated detectors.

e Carrier capture and emission lifetimes are short, and barrier capacitance decreases to
?eometrica its value at low (U< Ubni) applied voltage of the diodes with enhancement of
luence. Operation of a diode is similar to that of capacitor.

Items to clarify:
Whether diode/detector of the present design is functional after heavy irradiations?- doubtful
What is the system of defects and levels, which governs extraction of carriers (UR) and state of
material?- material becomes similar to insulator.
Additonal issues: - if there are filled levels those compensate material;
- how rapidly these levels are able to response to external voltage changes
Which models are acceptable for prediction of characteristics?

Ec

Ev Ev

The BELIV technique with spectrally resolved fs pulsed IR (1.1 — 10 ym) biasing
has been employed to clarify what is a system of levels and if these levels are filled



Variations of BELIV transients by pulsed IR of varied spectrum
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Variations of BELIV transients by pulsed IR of varied spectrum

in neutron irradiated detectors
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Variations of BELIV transients by pulsed IR of varied spectrum
in neutron irradiated detectors
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For 1E14 n/cm2 and hv> 0.83 eV possible For 1E16 n/cm2 only space charge
partial recovering of a barrier, while for generation current increases (extremely rapid
hv< 0.5 eV space charge capture/emission processes) while barrier capacitance

generation current prevails (rapid is close to Cgeom
capture/emission processes



e A clear structure of deep levels is absent in heavily irradiated diodes >104
n/cm? while carriers are generated by inter-band excitation.

Items to clarify:
Whether diode/detector of the present design is functional after heavy irradiations?- doubtful
What is the system of defects and levels, which governs extraction of carriers (Ur) and state of
material?- material becomes similar to insulator
Additonal issues: - if there are filled levels those compensate material;
- no, high density of various species levels is more probable those are only weakly filled by small no
- how rapidly these levels are able to response to external voltage changes
- fast capture of excess carrier and fast space charge generation current response

But system relaxes to equilibrium state very slowly — as estimated from |-V point-by-point
measurements at T<150 K

Which models are acceptable for prediction of characteristics?

The disordered material models-?



Summary

« Examined MW-PCT characteristics imply prevailing of intricate system of
defects and reduction of majority carriers. The recombination capture lifetimes
become shorter than dielectric relaxation time.

- Carrier emission lifetime (increase of leakage current — at URr in I-V), follows
capture lifetime (increase of serial resistance R~no - at Urin I-V)

eBarrier capacitance decreases to geometrical value of the diodes with
enhancement of fluence. Carrier capture and emission lifetimes are short. The
Pointed system of deep levels can be revealed only in diodes irradiated with
luence of <1014 n/cm32.

e A clear structure of deep levels is absent in heavily irradiated diodes >1014
n/cm?2 while carriers can be generated by inter-band excitation.



Thanks to G.Kramberger for neutron irradiations.
E.Tuominen, J.Harkonen and J.Raisanen are appreciated
for samples (substrates and pin diodes) as well as for proton irradiations.

Thank You for attention!



Depletion aproximation for material
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Electron
energy

Transient currents in depletion region

in deep traps containing material
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