
Container Security:
What Could Possibly Go Wrong?

Daniel Kouřil

What is a container?
● fundamentally, a container is just a running process controlled by the host kernel

● it is isolated from the host and from other processes

● there are different containerization technologies available
(Docker, Podman, Singularity, LXD, ...)

○ in this tutorial, we will focus mainly on Docker but principles hold for other technologies

2

Docker Terminology
● Docker container image - a standalone package of files, which includes everything needed to

run an application
(code, runtime, system tools, system libraries and settings)

● an image is usually pulled from a registry to a host machine
(e.g. DockerHub)

● a Docker container - a running instance of an image

● a host machine runs the container engine (Docker Daemon) and manages individual containers

3

Docker Architecture

4
https://docs.docker.com/get-started/overview/

Docker Container Creation
● the image is opened up and the filesystem of that image is copied into a temporary directory

structure on the host

● Docker filesystem is a stacked file system of individual layers stacked on “mount”

● the ‘/’ root directory of the container is mounted and available on the host, e.g.:

/var/lib/docker/overlay2/51415bc9cd3ab2c47d218a897516ea2bf0545595fadf4a167ed5cfd3230a5f99/

● changes to the directory are visible from both sides (host and container)

● when the container is removed, any changes to its state disappear unless “committed” via

dockerd

5

6

Starting Docker Container Processes
● the container processes are maintained natively via the host kernel

● to provide application sandboxing, Docker uses Linux namespaces and cgroups

● when you start a container with docker run, Docker creates a set of namespaces and
control groups, which contain the process(es) started inside the container

8

Namespaces
● Docker Engine uses the following namespaces on Linux

○ PID namespace for process isolation

○ NET namespace for managing/separating network interfaces

○ IPC namespace for separating inter-process communication

○ MNT namespace for managing/separating filesystem mount points

○ UTS namespace for isolating kernel and version identifiers

(mainly to set the hostname and domainname visible to the process)

○ User ID (user) namespace for privilege isolation

● user namespace must be enabled on purpose, it is not used by default

9

PID namespace
● allows the container to establish separate process trees

● the complete picture still visible from the host (running in the “system” namespace)

10

host# docker run -it debian bash
root@3146c2faec9b:/# dash
ps af

PID TTY STAT TIME COMMAND

1 pts/0 Ss 0:00 bash
6 pts/0 S 0:00 dash
7 pts/0 R+ 0:00 _ ps af

1029 ? Ssl 7:48 /usr/bin/containerd
28834 ? Sl 0:00 _ containerd-shim -namespace moby ……...

28851 pts/0 Ss 0:00 _ bash
28899 pts/0 S+ 0:00 _ dash

Host displays all processes

User ID (user) Namespace
● enables establishing separated uid/gid allocations, decoupled from real identifiers

○ A user process in a the namespace is assigned a ‘local’ identifier that is recognized only inside
the namespace

● a mapping need to be maintained between uids/gids in the namespace and “global” (real) uids/gids

11

Host (real) id’s
● 0
● 1
● ….
● 100000
● 100001

id’s in a user namespace
● 0
● 1

● by default, user namespace is not enabled by Docker, i.e. root in the container is root in the

host

Cgroups I.
● short for control groups

● they allow Docker Engine to maintain available system resources

● they implement resource limiting for different resources (CPU, disk I/O, etc.)

● they help to ensure that a single container can be assigned only limited resources

● cgroups are organized in a (tree) hierarchy for a given cgroup type

12

Cgroups II.
● a process (thread) may be assigned one or more cgroup(s)

○ Management possible (e.g.) via the /sys pseudo-filesystem (/sys/fs/cgroup)

● Example how to set up a cgroup:

13

create a specific cgroup:
mkdir /sys/fs/cgroup/memory/memory_eaters

limit the memory usage to 10MB
echo 10000000 > /sys/fs/cgroup/memory/memory_eaters/memory.limit_in_bytes

enter the new cgroup with the current shell to apply to limit:
echo $$ > /sys/fs/cgroup/memory/memory_eaters/cgroup.procs

Linux Kernel Capabilities
● capabilities turn the binary “root/non-root” dichotomy into a fine-grained access control

system

● by default, Docker starts containers with a restricted set of capabilities

● Docker supports the addition and removal of capabilities

● additional capabilities extend the utility but have security implications, too

● a container started with --privileged flag obtains all capabilities

● running without --privileged doesn’t mean the container doesn’t have root privileges!

14

I am the root. Or not?
● multiple levels of elevated privileges, from an unprivileged user to full root rights:

○ if user namespace is enabled, the root inside a container has no root privileges outside in
the host system

○ not available in default Docker setup

○ by default, the root in a container has some elevated privileges but restricted by a set of
capabilities

○ we can explicitly add extra capabilities to a container on start

○ with the --privileged flag, we have full root rights granted

15

16

root may still be limited

Docker Daemon
● containers and images are maintained by Docker Daemon

● Docker daemon needs full access (administrative) to the system

○ Containers can be given all features they need

■ Internally (c.f. iptables before) or externally (port forwarding)

● Docker daemon provides full access (administrative) to the system

○ e.g., it allows you to share a directory between the Docker host and a guest container

■ we can start a container where the /host directory is the / directory on your host

● only trusted users should be allowed to control your Docker daemon

○ Compare with root-less container technology
17

Docker interface
● clients communicate with the daemon using an interface

● by default, Docker Daemon listens for requests at a unix domain socket created at
/var/run/docker.sock

● it is possible to make the Docker Daemon listen on a network interface

● CLI clients have options to specify the endpoint (e.g. over the network)

18

Docker vs. chroot command
● a container isn’t instantiated by the user but the Docker daemon on behalf of the user

● anyone who is allowed to communicate with the Docker Daemon can manage containers

● that includes using any configuration parameters

● they can play with binding/mounting files/directories

● or decide which user id will be used in the container

● it’s not just better chroot

19

Container Security

Threat Landscape
● proper deployment and configuration requires understanding the technology

● image management (integrity and authenticity of the image)

● trust in the image maintainer and the repository operator

● malicious images may be found even in an official registry

https://unit42.paloaltonetworks.com/cryptojacking-docker-images-for-mining-monero/
21

Usual Best Practice
● especially proper vulnerability/patch management

● it is often kernel-related and therefore requiring reboot

● proper patch management extremely important (couple of vulns over the past few years)

● out of scope for today

22

Escaping containers
● a very general term

● it does not necessarily mean controlling the host system

● severity is determined by the risks

● data access (according to the C.I.A triad):

● Reading (violation of C.)

● Modifying (violation of I.)

● executing code outside the container (assigned cgroups and namely namespaces)

23

Escaping with containers
● make use of technology to bypass existing barriers

● e.g., mounting a directory to a container

● inject a “hook” that is invoked by a trusted component in the system

○ a crontab rule or a kernel “notifier” running command on certain events

○ must run outside the container - APIs (e.g. inotify) won’t help

24

Docker-related incidents
● unprotected access to Docker Daemon over the Internet

○ revealed by common Internet scans

○ instantiation of malicious containers used for dDoS activities

● stolen credentials providing access to the Docker Daemon

○ used to deploy a container set up in a way allowing breaking the isolation

○ the attackers escaped to the host system

○ an deployed crypto-mining software and misused the resources

25

Other kernel security features
● it is possible to enhance Docker security with systems like TOMOYO, AppArmor, SELinux, etc.

● you can also run the kernel with GRSEC and PAX

● all these extra security features require extra configuration

26

Cheat Sheets

Docker Cheat Sheet I.
start a new container
docker run IMAGE
docker run --rm IMAGE

start a new container in interactive mode (e.g. with a shell)
docker run -it IMAGE bash

start a new container from an image with a command
docker run IMAGE command

start a new container and map a local directory into the container
docker run -v HOSTDIR:TARGETDIR IMAGE

28

Docker Cheat Sheet II.
show a list of running containers
docker ps

show a list of all containers
docker ps -a

delete a container
docker rm CONTAINER

start a shell inside a running container
docker exec -it CONTAINER bash

29

stop a running container
docker stop CONTAINER

resume a stopped container
docker start CONTAINER

download an image from a repository
docker pull IMAGE

List local images
docker image ls

Delete a local image
docker image rm IMAGE

Practical Part

	Slide 1: Container Security: What Could Possibly Go Wrong?
	Slide 2: What is a container?
	Slide 3: Docker Terminology
	Slide 4: Docker Architecture
	Slide 5: Docker Container Creation
	Slide 6
	Slide 8: Starting Docker Container Processes
	Slide 9: Namespaces
	Slide 10: PID namespace
	Slide 11: User ID (user) Namespace
	Slide 12: Cgroups I.
	Slide 13: Cgroups II.
	Slide 14: Linux Kernel Capabilities
	Slide 15: I am the root. Or not?
	Slide 16: root may still be limited
	Slide 17: Docker Daemon
	Slide 18: Docker interface
	Slide 19: Docker vs. chroot command
	Slide 20: Container Security
	Slide 21: Threat Landscape
	Slide 22: Usual Best Practice
	Slide 23: Escaping containers
	Slide 24: Escaping with containers
	Slide 25: Docker-related incidents
	Slide 26: Other kernel security features
	Slide 27: Cheat Sheets
	Slide 28: Docker Cheat Sheet I.
	Slide 29: Docker Cheat Sheet II.
	Slide 30: Practical Part

