MUNI

Container Security:
What Could Possibly Go Wrong?

Daniel Kouril

DX
...............
000000

cesnet

fundamentally, a container is just a running process controlled by the host kernel
it is isolated from the host and from other processes

there are different containerization technologies available
(Docker, Podman, Singularity, LXD, ...)

o in this tutorial, we will focus mainly on Docker but principles hold for other technologies

Docker container image - a standalone package of files, which includes everything needed to

run an application
(code, runtime, system tools, system libraries and settings)

an image is usually pulled from a registry to a host machine
(e.g. DockerHub)

a Docker container - a running instance of an image

a host machine runs the container engine (Docker Daemon) and manages individual containers

Docker Architecture

Client) DOCKER_HOST} @—*
docker build -{-- 4.4 .g]'é,
%)

j| [Containers — \.\ @—':—

Docker daemon I
7/ / < TR =
y ! \ ~
docker pull ~-| |/ . : 3

docker run —f

0oy

https://docs.docker.com/get-started/overview/

the image is opened up and the filesystem of that image is copied into a temporary directory
structure on the host

Docker filesystem is a stacked file system of individual layers stacked on “mount”

the ‘/’ root directory of the container is mounted and available on the host, e.g.:

/var/lib/docker/overlay2/51415bc9cd3ab2c47d218a897516ea2bf0545595fadf4a167ed5cfd3230a5f99/

changes to the directory are visible from both sides (host and container)

when the container is removed, any changes to its state disappear unless “committed” via
dockerd

host# docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

ba6dblf8ab7c python:3.8 "bash" 11 days ago Up 11 days 0.0.0.0:5000->5000/tcp zen_wozniak

host#

host# docker exec ba6dblfB8ab7c mount grep ' /

overlay on / type overlay (rw,relatime,lowerdir=/var/lib/docker/overlay2/1/TL2SKWTCH7PPJ7BMWWAZWFINPT: /var/lib/docker/overlay2/1/J7KGELYKIXB2CFDNIWL3KL

W7DB: /var/lib/docker/overlay2/1/4C5BPXBAGRAIMMKLA6T6IX6FSD: /var/lib/docker/overlay2/1/GK4LB4QKD6EQM3NHVYLV3XDIIB: /var/1lib/docker/overlay2/1/7747UFBNYPA

TDJ5QKRFX0Y2GPN: /var/lib/docker/overlay2/1/UKEBGZQU6VRQXAOIHYLSELSW3P: /var/1lib/docker/overlay2/1/3C3IB3ANGSNZDBTLKVSNNRPT3S: /var/lib/docker/overlay2/1/

THTG57SQVUSTQQOWQCIWNZB7TQ: /var/lib/docker/overlay2/1/FYP2GIR3DV2GQ77HFXI2IXVMRL: /var/1lib/docker/overlay2/1/FJ7XGAOYKTVEBCDSULRFS3XF7S,
/diff,workdir=/var/lib/docker/overlay2/60fdebf44f92a37a28856a965a30f5

bf5ac55f0f054222515ee8725ad7e2b2ce/work)

host# docker exec ba6dblf8ab7c 1s /var/lib/docker/overlay2/60fd4ebf44f92a37a28856a965a30f5bf5ac55f0f054222515ee8725ad7e2b2ce

1s: cannot access '/var/lib/docker/overlay2/68f4ebf44192a37a28856a965a30f5bf5ac55f0f054222515ee8725ad7e2b2ce’: No such file or directory

host#

host# mount | grep overlay

overlay on type overlay (rw,relatime,lowerdir=/var/lib

/docker/overlay2/1/TL2SKWTCH7PPI7BMWWAZWFINPT: /var/1lib/docker/overlay2/1/J7KGELYKIXB2CFDNIWL3KLW7DB: /var/lib/docker/overlay2/1/4C5BPXBAGRAIMMKLAGT6IX6F

5D:/var/lib/docker/overlay2/1/GKALB4QKD6EQM3NHVYLV3XDIIB: /var/lib/docker/overlay2/1/7747UFBNYPATDISQKRFX0Y2GPN: /var/lib/docker/overlay2/1/UKEBGZQU6VRQX

AOIHYLSELSW3P: /var/lib/docker/overlay2/1/3C3IB3ANGSNZDBTLKVSNNRPT3S: /var/1lib/docker/overlay2/1/7HTG575QVUSTQQOWQCIWNZB7TQ: /var/lib/docker/overlay2/1/FY

P2GIR3DV2GQ77HFXI2IXVMRL: /var/lib/docker/overlay2/1/FI7XGAOYKTVEBCD5SULRF53XF7S, upperdir=/var/lib/docker/overlay2/60f4ebf44f92a37a28856a965a30f5bf5ac55f

0f054222515ee8725ad7e2b2ce/diff,workdir=/var/lib/docker/overlay2/60fdebf44f92a37a28856a965a30f5bf5ac55f07054222515ee8725ad7e2b2ce/work)

host#

host# 1ls /var/lib/docker/overlay2/60fdebf44f92a37a28856a965a30f5bf5ac55f0f054222515ee8725ad7e2b2ce/merged

bin boot data dev etc home 1ib 1ib64 media mnt opt proc root run sbin srv sys tmp usr var

host#

host# docker exec babdblf8ab7c touch /trace

host# docker exec ba6dblf8ab7c 1s -1t /

total 84

drwxr-xr-x 1 root root 4096 May 28 16:36 bin
drwxr-xr-x 2 root root 4096 Mar 19 14:46 boot
drwxr-xr-x 3 1000 1000 4096 May 30 20:03 data
drwxr-xr-x 5 root root 360 May 28 16:33 dev
drwxr-xr-x 1 root root 4096 Jun 8 15:26 etc
drwxr-xr-x 2 root root 4096 Mar 19 14:46 home
drwxr-xr-x 1 root root 4096 May 11 03:50 lib
drwxr-xr-x 2 root root 4096 May 9 02:00 1ib64
drwxr-xr-x 2 root root 4096 May 9 02:00 media
drwxr-xr-x 2 root root 4096 May 9 02:00 mnt
drwxr-xr-x 2 root root 4096 May 9 02:00 opt
dr-xr-xr-x 444 root root @ May 28 16:33 proc
drwx------ 1 root root 4096 Jun 8 13:53 root
drwxr-xr-x 3 root root 4096 May 9 02:00 run
drwxr-xr-x 1 root root 4096 May 28 16:36 sbin
drwxr-xr-x 2 root root 4096 May 9 02:00 srv
dr-xr-xr-x 13 root root 0 Jun 8 14:36 sys
drwxrwxrwt 1 root root 4096 May 28 17:17 tmp
drwxr-xr-x 1 root root 4096 May 9 02:00 usr
drwxr-xr-x 1 root root 4096 May 9 02:00 var
host# date

Wed Jun 8 16:47:36 CEST 2022

host#

host# 1ls /var/lib/docker/overlay2/60f4ebf44f92a37a28856a965a30f5bf5ac55f0f054222515ee8725ad7e2b2ce/merged
bin boot data dev etc home 1ib 1ib64 media mnt opt proc root run sbin srv sys tmp usr var

host# |

the container processes are maintained natively via the host kernel

to provide application sandboxing, Docker uses Linux namespaces and cgroups

when you start a container with docker run, Docker creates a set of namespaces and
control groups, which contain the process(es) started inside the container

® Docker Engine uses the following namespaces on Linux

@)

@)

PID namespace for process isolation

NET namespace for managing/separating network interfaces

IPC namespace for separating inter-process communication

MNT namespace for managing/separating filesystem mount points

UTS namespace for isolating kernel and version identifiers

(mainly to set the hostname and domainname visible to the process)

User ID (user) namespace for privilege isolation

® user namespace must be enabled on purpose, it is not used by default

e allows the container to establish separate process trees

e the complete picture still visible from the host (running in the “system” namespace)

host# docker run -it debian bash
root@3146c2faec9b:/# dash

ps af

PID TTY

pts/0
6\ pts/O
7 \pts/0

STAT TIME COMMAND
Ss 0:00 bash

S 0:00 dash

R+ 0:00 _ps af

Host displays all processes

1029 ? Ssl
288347 S|
28851 pts/0 Ss
28899 pts/0 S+

7:48
0:00
0:00
0:00

/usr/bin/containerd

_ containerd-shim -namespace moby
_bash
_dash

® enables establishing separated uid/gid allocations, decoupled from real identifiers

o A user process in a the namespace is assigned a ‘local’ identifier that is recognized only inside
the namespace

® a mapping need to be maintained between uids/gids in the namespace and “global” (real) uids/gids

Host (real) id’s

e O id’s in a user namespace
o 1 e O

o ... O/ ¢ 1

e 10000 *//////,,///*””///*

e 100001

® Dby default, user namespace is not enabled by Docker, i.e. root in the container is root in the
host

short for control groups

they allow Docker Engine to maintain available system resources

they implement resource limiting for different resources (CPU, disk 1/0, etc.)

they help to ensure that a single container can be assigned only limited resources

cgroups are organized in a (tree) hierarchy for a given cgroup type

12

® a process (thread) may be assigned one or more cgroup(s)
o Management possible (e.g.) viathe /sys pseudo-filesystem (/sys/fs/cgroup)
e Example how to set up a cgroup:

create a specific cgroup:
mkdir /sys/fs/cgroup/memory/memory eaters

limit the memory usage to 10MB
echo 10000000 > /sys/fs/cgroup/memory/memory eaters/memory.limit in bytes

enter the new cgroup with the current shell to apply to limit:
echo $$ > /sys/fs/cgroup/memory/memory eaters/cgroup.procs

13

capabilities turn the binary “root/non-root” dichotomy into a fine-grained access control
system

by default, Docker starts containers with a restricted set of capabilities

Docker supports the addition and removal of capabilities
additional capabilities extend the utility but have security implications, too

a container started with --privileged flag obtains all capabilities

running without --privileged doesn’t mean the container doesn’t have root privileges!

14

multiple levels of elevated privileges, from an unprivileged user to full root rights:

o if user namespace is enabled, the root inside a container has no root privileges outside in
the host system

O not available in default Docker setup

o by default, the root in a container has some elevated privileges but restricted by a set of
capabilities

o we can explicitly add extra capabilities to a container on start

o with the --privileged flag, we have full root rights granted

15

E root

root# docker run --rm -it debian/ip bash

root@b523a39fcc48: /# iptables -L -n

iptables: Permission denied (you must be root).

root@b523a39fcc4s: /# ||

E root

root# docker run --rm -it --cap-add=NET_ADMIN debian/ip bash

root@361c51aal1be: /# iptables -L -n
Chain INPUT (policy ACCEPT)
target prot opt source

Chain FORWARD (policy ACCEPT)
target prot opt source

Chain OUTPUT (policy ACCEPT)
target prot opt source
root@361c51aa11be: /# |

destination

destination

destination

| =

X

16

containers and images are maintained by Docker Daemon

Docker daemon needs full access (administrative) to the system

O Containers can be given all features they need

B Internally (c.f. iptables before) or externally (port forwarding)
Docker daemon provides full access (administrative) to the system

O e.g., it allows you to share a directory between the Docker host and a guest container

| we can start a container where the /host directory is the / directory on your host

only trusted users should be allowed to control your Docker daemon

O Compare with root-less container technology

17

clients communicate with the daemon using an interface

by default, Docker Daemon listens for requests at a unix domain socket created at
/var/run/docker.sock

it is possible to make the Docker Daemon listen on a network interface

CLI clients have options to specify the endpoint (e.g. over the network)

18

a container isn’t instantiated by the user but the Docker daemon on behalf of the user
anyone who is allowed to communicate with the Docker Daemon can manage containers
that includes using any configuration parameters

® they can play with binding/mounting files/directories

® or decide which user id will be used in the container

® it’s not just better chroot

19

Container Security

proper deployment and configuration requires understanding the technology
image management (integrity and authenticity of the image)
trust in the image maintainer and the repository operator

malicious images may be found even in an official registry

Attackers Cryptojacking Docker Images to Mine
for Monero

Ashutosh Chitwadgi Rahul Rajewar

Cloud, Container. Cryptocurrency. Docker Hub, Monero

https://unit42.paloaltonetworks.com/cryptojacking-docker-images-for-mining-monero/

21

especially proper vulnerability/patch management
it is often kernel-related and therefore requiring reboot
proper patch management extremely important (couple of vulns over the past few years)

out of scope for today

22

Escaping containers

a very general term
it does not necessarily mean controlling the host system
severity is determined by the risks
data access (according to the C.I.A triad):
e Reading (violation of C.)
e Modifying (violation of I.) Availability

executing code outside the container (assigned cgroups and namely namespaces)

23

make use of technology to bypass existing barriers
® e.g.,, mounting a directory to a container
inject a “hook” that is invoked by a trusted component in the system

III

o acrontab rule or a kernel “notifier” running command on certain events

© must run outside the container - APIs (e.g. inotify) won’t help

24

unprotected access to Docker Daemon over the Internet
o revealed by common Internet scans

o instantiation of malicious containers used for dDoS activities

stolen credentials providing access to the Docker Daemon
o used to deploy a container set up in a way allowing breaking the isolation
o the attackers escaped to the host system

o an deployed crypto-mining software and misused the resources

25

Other kernel security features

it is possible to enhance Docker security with systems like TOMOYO, AppArmor, SELinux, etc.
you can also run the kernel with GRSEC and PAX

all these extra security features require extra configuration

26

Cheat Sheets

start a new container
docker run IMAGE
docker run --rm IMAGE

start a new container in interactive mode (e.g. with a shell)
docker run -it IMAGE bash

start a new container from an image with a command
docker run IMAGE command

start a new container and map a local directory into the container
docker run -v HOSTDIR:TARGETDIR IMAGE

show a list of running containers
docker ps

show a list of all containers
docker ps -a

delete a container
docker rm CONTAINER

start a shell inside a running container
docker exec -it CONTAINER bash

stop a running container
docker stop CONTAINER

resume a stopped container
docker start CONTAINER

download an image from a repository
docker pull IMAGE

List local images
docker image Is

Delete a local image
docker image rm IMAGE

Practical Part

	Slide 1: Container Security: What Could Possibly Go Wrong?
	Slide 2: What is a container?
	Slide 3: Docker Terminology
	Slide 4: Docker Architecture
	Slide 5: Docker Container Creation
	Slide 6
	Slide 8: Starting Docker Container Processes
	Slide 9: Namespaces
	Slide 10: PID namespace
	Slide 11: User ID (user) Namespace
	Slide 12: Cgroups I.
	Slide 13: Cgroups II.
	Slide 14: Linux Kernel Capabilities
	Slide 15: I am the root. Or not?
	Slide 16: root may still be limited
	Slide 17: Docker Daemon
	Slide 18: Docker interface
	Slide 19: Docker vs. chroot command
	Slide 20: Container Security
	Slide 21: Threat Landscape
	Slide 22: Usual Best Practice
	Slide 23: Escaping containers
	Slide 24: Escaping with containers
	Slide 25: Docker-related incidents
	Slide 26: Other kernel security features
	Slide 27: Cheat Sheets
	Slide 28: Docker Cheat Sheet I.
	Slide 29: Docker Cheat Sheet II.
	Slide 30: Practical Part

