
Digital Forensics:
Data Analysis

Daniel Kouřil

Analysis of storage images

Analysis aims

• The aim is to analyze collected evidence
– Imagine you have a large (GBs) image and need to do its

analysis (e.g. access files and recover deleted data)

• Clarify the objective before starting the actual analysis
– Recovering deleted data vs. secure evidence about

malicious activities

Analysis environment

• The analysis does not depend on the system
where we got data from
– Artifacts related to MS Windows architecture can be

analyzed on Linux-based environment and vice versa

• A Linux environment based on CLI will be used
thorough the course
– Many tools are common commands or are available

from distribution packages

• Always keep the primary data intact and work
only with its copies

Image analysis

• Image is a sequence of bytes (just a file)

– Internal structure needs to be established

Physical device’s image

Volume (partition)

File system

File

• Some objects may be embedded

– Files containing other images (VM disks)

Procedure to analyze an image

• Take the input image as a single volume
• Break down the current volume to additional volumes (if any)

– Detect all visible volumes and their types
– Detect unallocated space

• Process identified volumes one by one
– If the volume hosts a file system -> mark for subsequent analysis
– Other (known) volumes (auxiliary) -> check if they contain other

volumes (or their parts) and reconstruct them
– Unknown volume type -> ad-hoc analysis

• Process file system volumes
– Gather and evaluate information about files stored
– Files can contain volumes also (ie. start again)

• Examine unallocated space

File system analysis

File system

• Organization of data on storage

• Data kept in files

– File content

– File metadata

• File systems differ from forensics view

– Different features

– Different support of tools

File Content

• File is a logical sequence of bytes

– The type is determined by the content, not by
name, location or extension

• File analysis is dictated by the objectives

– User data (data content)

– System files (logs, configurations, installed SW)

– Executables

File metadata

• Metadata information
– Owner identifier

– Group identifier

– Permissions / ACL

– Addresses of data blocks (content)

– Important timestamps

• No need to access content
– Smaller space needed

– Less privacy issues

Analysis using timelines

Timelines

• Common analysis technique important for
many objectives

• Timeline provides a simple overview of events
that happened on the system

• Can be constructed from any data where
timestamps is recorded
– Logs, events (users logins)

– Application data (mail/document manipulations)

– File metadata (file utilizations)

File timestamps

• Common types of timestamps (POSIX)
– m-time (modification time) – the last time the content

was changed
– a-time (access time) – the time of last access (content)
– c-time (change time) – the last time metadata was

changed

• Additional timestamps on some file systems
– d-time (deletion time)
– b-time (creation time) (sometimes cr-time)

• Timestamps only refer to the very last action
performed

A malicious PHP file (backdoor) shell.php was found on a web server. Examine the
time stamps of archive.php, upload.php, gallery.php and determine which file was
likely used to store the malicious payload and select timestamp when the backdoor
was used for the last time.

Fimetis by CSIRT-MU (https://github.com/CSIRT-MU/fimetis)

Working with file timestamps

• Executing a file changes its Atime
– The precision of a-time depends on configuration

• m-time and a-time can be easily changed by file
owner
– happens when copying/moving files, or deploying

software from packages

• c-time can’t be changed easily
• Pay attention to time zones and granularity

– FAT uses system time, NTFS uses UTC
– Precision is among days (FAT), secs (ext3), and

nanosecs (ext4)

Obtaining metadata

• fls and mactime commands (only for
supported FS)

• Simple ’find’ command (recursive walk
through the filesystem)
– find / -xdev -print0 |

xargs -0 stat -c "%Y %X %Z %A %U %G %n"

– Leif Nixon’s timeline-decorator.py to format

• Be prepared for a lot of data (hundreds
thousands of records)

Live Analysis

Live analysis

• Access to volatile information kept by OS

• Some crucial aspects to consider

– Reliability of the collected data

– Modifications to the system done during the
process

• The goal is to capture information for off-line
analysis, not doing analysis on the host

Areas of Live Analysis

• Obtaining volatile information available from
kernel and applications

• Obtaining content of memory

– A complete host memory or memory of selected
processes

• Recovering data that would be lost

– Deleted, still open files on Linux

Obtaining OS information

• Network status
– Open/established connections, listening/bound

processes

– allocated IP (4/6) addresses

– VPN connections, routing tables, neighbors

– Firewall state

• Information on the system setup
– Available devices

– Mounted file systems, mapped drives, shares
• Data and “auxiliary” (RAIDs,…)

Obtaining OS information

• Information on processes
– List of active processes and their attributes

• The full path of the program, command line parameters, running time

– List of files open by processes
– Information on inter-process communication (shared memory,

queues)

• Information on the OS
– Loaded kernel modules/drivers, OS messages (dmesg), running

OS version
– Configured time-zone, uptime
– Clipboards contents

• Auxiliary info (partially available also offline)
– Logged users

Extracting information on processes

• Processes may contain important information

– Resources used (e.g. network connections, files
being processed, IPC)

– Memory contains pristine information, including
sensitive data

• Encryption keys, passwords

Linux specifics

Getting process information

• Process may have multiple file-descriptors
opened

– Used executable, libraries

– Particular files on file system

– Network sockets

• Information on processes can be accessed
using standard system commands
– lsof –p PID

/proc filesystem

• Linux kernel exposes some internal structures
in the /proc virtual file

• System commands mostly use data from /proc

• /proc can be useful to access data that is not
available through commands (or spot
anomalies)

Deleted files

• Deleted files are available until they are closed
– If a file is open by a process, it’s removed from the

filesystem but its content can still be still accessed

• “symbolic links” in /proc can be used to
recover the data
– cp /proc/$PID/exe /tmp/exe

– The process must be alive (even stopped)

• Holds for both executable and open files (see the
fd directory)

Network

• Getting information on network status

– Three different ways:

• netstat -tnp

• ss -tnp

• Check the /proc virtual filesystem

– All should yield the same information (in different
formats though)

• If not, some of the commands might be modified

• tcpdump might be handy to check live traffic

Dumping process memory

• gcore –o dump

– Part of the GDB package

– Some (soft) errors might be triggered

• Outputs an ELF file containing the process
memory

Analysis of executable files

Executable files

• Scripts
– List of commands, script constructs
– Easily readable by human (if not obfuscated)

• Binary executables
– Machine code (produced by compiler)
– byte code (Java)
– ELF, PE formats

• Libraries
– Static / dynamic
– Library functions, variables (internal / exported)
– Export interface (ABI/API)

Binary executable files

• System specific formats

• Dynamic vs. static analysis

ELF

A quick look inside an ELF executable

https://binvis.io/

• Statically vs. dynamically linked binaries
• file exe
exe: ELF 64-bit LSB executable, x86-64, version

1 (GNU/Linux), for GNU/Linux 2.6.32, statically

linked, stripped

Quick examination

• file exe
exe: ELF 64-bit LSB executable, x86-64, version 1

(GNU/Linux), for GNU/Linux 2.6.32, statically

linked, stripped

• strings –a exe

– Reveals human-readable strings

• A number of other tools is available

Useful links

• https://confluence.egi.eu/display/EGIBG/Fore
nsics+Howto

• https://www.dfn-
cert.de/en/Trainings.html#ITForensics

https://www.dfn-cert.de/en/Trainings.html#ITForensics
https://www.dfn-cert.de/en/Trainings.html#ITForensics
https://www.dfn-cert.de/en/Trainings.html#ITForensics
https://www.dfn-cert.de/en/Trainings.html#ITForensics

	Slide 1: Digital Forensics: Data Analysis
	Slide 2: Analysis of storage images
	Slide 3: Analysis aims
	Slide 4
	Slide 5: Analysis environment
	Slide 6: Image analysis
	Slide 7: Procedure to analyze an image
	Slide 8: File system analysis
	Slide 9: File system
	Slide 10: File Content
	Slide 11: File metadata
	Slide 12: Analysis using timelines
	Slide 13: Timelines
	Slide 14: File timestamps
	Slide 15
	Slide 16
	Slide 17: Working with file timestamps
	Slide 18: Obtaining metadata
	Slide 19: Live Analysis
	Slide 20: Live analysis
	Slide 21: Areas of Live Analysis
	Slide 22: Obtaining OS information
	Slide 23: Obtaining OS information
	Slide 24: Extracting information on processes
	Slide 25: Linux specifics
	Slide 26: Getting process information
	Slide 27
	Slide 28: /proc filesystem
	Slide 29: Deleted files
	Slide 30
	Slide 31: Network
	Slide 33: Dumping process memory
	Slide 34: Analysis of executable files
	Slide 35: Executable files
	Slide 36: Binary executable files
	Slide 37: ELF
	Slide 38: A quick look inside an ELF executable
	Slide 39: Quick examination
	Slide 40: Useful links

