
SOC
Workshop

David Crooks

UKRI STFC

EGI CSIRT/IRIS Security team

david.crooks@stfc.ac.uk

Backup

Zeek Exercises

1: Command line zeek

Run zeek from the command line
• On the zeek container, ”zeekctl stop” (it runs as a daemon at startup)

• Gather a pcap file, ”tcpdump –w /opt/pocketsoc-ng/data/somedata.pcap”

• Trigger “curl webserver” from client

• Tcpdump –r /opt/pocketsoc/data/somedata.pcap to test

• Use “zeek –r /opt/pocketsoc/data/somedata.pcap –C ” to analyse pcap

• Check the logs in the current directory

OUTCOME
This shows that we can capture a set of traffic, and run zeek against it directly to obtain a set of

logs. We will see later how we can achieve the same with zeek running as a daemon

2: zeek as a daemon

Run zeek as a daemon again
• Run “zeekctl start”

• cd /opt/zeek/logs/current/

• Trigger “curl webserver” from client

• Check the logs – these should contain similar results!

OUTCOME
We can compare the logs we see with zeek running as a daemon and those from running from the

command line: note that the config we use may be different depending on what options are given

to the command line

3: using tcpreplay to replay pcaps

Replay the captured pcap into the zeek daemon
• Run “tcpreplay –i eth0 /opt/pocketsoc-ng/data/somedata.pcap”

• cd /opt/zeek/logs/current/

• Check the logs – these should also contain similar results!

OUTCOME
We can use this method to replay prepared packet captures into a “normal” running zeek instance

and perform the same analysis as if the traffic were live. This is particularly useful for validation

purposes

4: main Zeek configuration

Zeek config
• Main config files are in “/opt/zeek/etc” and “/opt/zeek/share/zeek/site/”

• “networks.cfg node.cfg zeekctl.cfg” and “local.zeek”

Zeek intel config
• Observe the last config block in “local.zeek” following yesterday’s lecture

OUTCOME
We have looked at the key config files for Zeek

5: Zeek alerting: I

5. Check alerting configuration
• Going to use the CERN Mattermost for alerting in a private channel

• Webhook stored in `/opt/pocketsoc/data/webhook`

5: Zeek alerting: II

• On zeek node, cd /opt/zeek/share/zeek/site/

• In local.zeek, check the following is present

@load ./mattermost.zeek

hook Notice::policy(n: Notice::Info)

{

if (n$note == Intel::Notice)

{

add n$actions[Notice::ACTION_MATTERMOST];

}

}

5: Zeek alerting: III

• We use mattermost.zeek to call a helper script that actually does the webhook
call

• This is inefficient – there is a better way of doing this that will be implemented for the next time
I use this

• We can test this now: on the zeek node, run

/opt/pocketsoc-ng/bin/notifier.sh “Hi there!”

• We (or at least I ☺) should see an update in the channel

6: Summary so far

• Now we have tested that we can:
• Gather a packet capture file

• Run zeek from the cli

• Check the Zeek logs for recent activity

• Use the helper script to raise a notification independently of Zeek

• Now let’s do some alerting from a detection!
• First: MISP

MISP Exercises

First steps: MISP

• Username: admin@admin.test

• Password: $password

First steps: MISP

MISP exercises

• Log into your MISP instance

• https://scsc-2022-[01-39].cern.ch
• admin@admin.test + $password

• We want to create an event with the webserver as `ip_dst`
• And a filehash too if we want

• Start with an event

https://scsc-2022-[01-39].cern.ch/
mailto:admin@admin.test

MISP exercises

• Click “add an event” and we’ll work through the steps

• We want to add a “network” object

• Ip_dst= the webserver IP (should be 172.18.0.2)
• On the client container, you should be able to `dig webserver` to confirm

• Make sure that To IDS is clicked

• Publish (no email)

MISP exercises

• On the events page, check that you have one event!

• Next, we want to download this to Zeek

• In MISP, go to Global Actions -> My Profile and copy your authkey

• In Zeek, `export authkey=$AUTHKEY` and `/opt/pocketsoc-
ng/bin/pull_misp.sh`

• Should see a list of the intel in /opt/zeek/feeds/intel.txt

MISP exercises

• Now, trigger the “bad” activity! Either:
• On the client node, curl the webserver one more time OR

• On the zeek node, we can replay the pcap file into zeek again

• tcpreplay –i eth0 $pcapfile

• Either of these should
• Create a new entry in /opt/zeek/logs/current/intel.log

• Raise an alert in mattermost

Building a MISP network

• Use scsc-2022-00.cern.ch as our central instance

• I have prepopulated it with “sync users” that will let you sync your
instance to mine

• User: scsc@scsc-2022-[01-39].cern.ch

• Password: the same password

• You should now see the scsc-2022-00.cern.ch events

mailto:scsc@scsc-2022-[01-39].cern.ch

Building a MISP network

• In the -00 instance, again go to Global actions -> My profile and
copy the different authkey

• On your instance go to “Sync actions -> List Servers” and click on
“New Servers”

Building a MISP network

Base URL: https://scsc-2022-00.cern.ch

Instance Name: Central

Organisation Type: Local

Local organization type: PocketSOC

Authkey: the key you copied from the -00 instance

Enabled synchronisation methods: Pull

Allow self signed certificates (unsecure): check

(This shouldn’t be needed, this is on my snaglist)

-> Submit

https://scsc-2022-00.cern.ch/

Building a MISP network

• Check the server list (or click list servers)

• RUN Connection test

• If this fails, we can look at it

• On the far right side of that row, click the down arrow (hover text:
pull all to pull all events

• That’s it!

• You can also set up regular synching which will only pull deltas

First steps: OpenSearch Dashboards

• Username: admin

• Password: $password

First steps: OpenSearch Dashboards

First steps: OpenSearch Dashboards

First steps: OpenSearch Dashboards

First steps: OpenSearch Dashboards

First steps: OpenSearch Dashboards

First steps: OpenSearch Dashboards

First steps: OpenSearch Dashboards

