The RDF **t***t*-analysis implementation Analysis Grand Challenge

IRIS-HEP Fellow: Andrii Falko Fellowship dates: June-Sep, 2023 Home university: Taras Shevchenko National University of Kyiv Mentors: Enrico Guiraud, Alexander Held

AGC introduction

Test workflows envisioned for the HL-LHC

- columnar data extraction from large datasets,
- processing of that data (event filtering, construction of observables, evaluation of systematic uncertainties) into histograms,
- statistical model construction and statistical inference,
- relevant visualizations for these steps

Specification of a physics analysis

- $t\bar{t}$ cross-section measurement
- Top-quark mass reconstruction
- 2015 CMS Open Data
- Handling systematic variations

Reference implementations

- Coffea
- RDataFrame
- Julia

$t\bar{t}$ -analysis specification

3. The main stages of analysis

- 1. Data extraction
- 2. Events filtering
- 3. Observables calculation

2. Input dataset: 2015 CMS Open Data

4. Statistical inference (is not a focus of this project)

$t\bar{t}$ -analysis specification

Selection of appropriate events:

- Single lepton
- At least 4 jets
- At least 2 b-tagged jets
- Top mass reconstruction
 - Find combination of three jets which is the best candidate to be decayed from one top-quark
 - Plotting mass of tri-jet

Observables to calculate

Signal region (reconstructed top mass):

Control region (sum of the p_T of all jets in each event):

>=4 jets, 1 b-tag

ttbar 80000 single top s chan single top t chan 70000 single_top_tW wjets 60000 50000 40000 30000 20000 10000 150 300 350 200 250 400 450 500 550 H_⊤ [GeV]

Scalar sum of transverse momenta plot

Top-quark mass peak plot

AGC versions

- The ways how to discriminate signal events from the background and how to calculate observes can be slightly different
- AGC has been evolving from version 0.1.0 to 2.0.0 (find more in AGC documentation)

V	Data schema	Selection cuts	Calculation observables
0	POET	Exactly 1 lepton with $p_T > 25 \ GeV$; at least four jets with $p_T > 25 \ GeV$; at least two jet with <i>b</i> -tag > 0.5	Find all tri-jet combinations per event At least 1 jet must be b-tagged Find tri-jet with a max combined p_T Calc combined mass of tri-jet system
1	NanoAOD		
2	NanoAOD	1 Lepton: $p_T > 30 \ GeV$, $ \eta < 2.1$, sip3d<4; Electrons: cutBased=4; Muons: tightId and pfRelIso04_all<0.15; Jets (>= 4): $p_T > 30 \ GeV$, $ \eta < 2.1$, isTightLeptonVeto, <i>b</i> -tag > 0.5	Machine Learning Component is used as an alternative way to find the decay product of top quark by assigning of each jet to its parent parton.

RDataFrame implementation status

- Versions 0 (0.1.0 and 0.2.0) were implemented during my last IRIS-HEP project
- Versions 1 and 2 are going to be implemented during this project:
- Already switched to NanoAOD data schema
- Now comparing produced histograms with those obtained by Alex's coffea implementation. Looking for the origin of small discrepancies (< 0,1 %))
- Need to move implementation to AGC v2 cuts
- Add code to calculate ML features
- Add code to do ML inference
- Everything needs to pass validation, e. i. produced histograms should be the same as in the coffea version

THANK YOU FOR YOUR ATTENTION!