

The HSF Conditions Database: Intelligent Caching

Candidate: Ernest Sorokun Mentor: Lino Gerlach

Conditions Data

"Conditions data is any additional data needed to process event data"

Conditions Data: Challenges

Changes over time

- Repeat detector calibration with larger cosmic dataset
- Improve calibration algorithms

Versioning & configuration

Heterogenous data

- Granularity varies (time indexed, run-indexed, constant)
- Structure of payload varies (3D map, time-indexed values, single number, ...)

Payload agnostic by design

High access rates

- Distributed computing jobs access same conditions data simultaneously
- Access rates up to ~kHz

Fast DB queries & effective caching

Similar challenges for various HEP experiments

HSF Conditions Database

- Discussions across various experiments
- Creation of a uniform conditions database system for various HEP experiments
- Key recommendations for conditions data handling
 - Loose coupling between client and server using RESTful interfaces
 - The ability to cache queries as well as payloads
 - Separation of payload queries from metadata queries

*HSF Conditions Databases activity: https://hepsoftwarefoundation.org/activities/conditionsdb.html

Implementation – Overview

nopayloadclient:

- Client-side stand-alone C++ tool
- Communicates with **nopayloaddb** (server)
- Local caching
- Handling of payloads
- Database stores <u>only</u> file urls
- Use existing solution to store payloads
 - For example /cvmfs/

Representational State Transfer (REST)

Application Programming Interfaces (API)

REST API Rules

- Uniform Interface
- Client Server
- Stateless
- Cacheable

	GET POST PUT DELETE		HTTP REQUEST	
	· · · · · · · · · · · · · · · · · · ·	API	<u>ج</u>	•••
	JSON XML HTML		HTTP RESPONSE	
CLIENT		REST API		SERVER

Request format

Example*

10.130.2.1 - - [16/Jun/2023:10:00:32 +0000] "GET / api / cdb_rest/ payloadiovs/ ?gtName=ExampleGT & majorlOV=0&minorlOV=1000000000 HTTP/1.1" 200 2 "-" "curl/7.29.0" "130.199.148.194"

Nginx log

- Real Data Usage
 - Log files of sPHENIX
 - Production usage
- Multi-Dimensional analysis
- Cache and Prefetching Patterns
- Consideration of Request Types

Cache patterns

Response time result

Timeline

Week 1-2

Understand basic principles of Databases, caches, webservers and REST APIs, read literature (HSF conditions data white paper), look at source code of the implementation at hand.

Week 2-3

Understand the data format of the log files that document the DB access and extract time-series data from it for further analysis. Make first plots.

Week 4-5

Understand different access patterns qualitatively and decide on an optimized caching strategy.

Week 6-8

Develop an algorithm that automatically and in real time identifies the current access pattern and suggests an optimized caching strategy.

Week 8-10

Write documentation, summarize findings on slides. Present results in IRIS-HEP Fellowship meeting. Fine-tune and deploy automated.

Thank you for attention

sphenix

Radical makeover of Pioneering High Energy Nuclear Interaction eXperiment

- The first experiment that deployed the HSF Conditions Database
- Using a superconducting solenoid on 4° K
- The giant 3D digital camera detector captures 15,000 particle collisions per second, 3 times faster than PHENIX.

