Estimation of energy cost and efficiency of HEP data compression ML algorithm (Baler)

Leonid Didukh 12.07.2023

Motivation

- The efficient computational resource utilisation is challenge in scientific and industrial research. It affects time, money and environment.
- Data preservation is difficult process as it requires the stable storage facilities, energy and finance.
- Massive energy and climate footprint of ML models. With increasing data and various deployed AI the energy consumption growth and CO2 emission as well.
- The energy demand is growing exponentially for many ML architectures.
- The amount of AI-models is growing, the DNN becoming deeper, the amount of collected data is growing.
- There is the way to optimize the cost with respect to the performance metrics of ML model.

Figure 9: Estimated Joules of a forward pass (CV). The dashed line is a linear fit (logarithmic y-axis) for the models with highest accuracy per year. The solid line fits all models.

Figure 4: Relation between accuracy and GFLOPs.

Problems and Solutions

- Data preservation problem (<u>https://arxiv.org/pdf/2302.03583.pdf</u>, <u>https://home.cern/news/news/computing/lhc-pushing-computing-limits</u>)
 - The data moving is one of the most expensive operation. How to reduce the moving/copying operation?
 - We need to have a tool to keep and read/write data fastly and cheap -> Data compression is one of the solution.
- CPU challenge:
 - The number of FLOPS is growing with the accuracy of DNN. Computation (forward pass) becomes longer.
 - We need to have a way to do the fast computation preserving and improving the accuracy of model.
- Energy consumption estimation and reduction.
 - How to measure the energy consumption for DNN application?
 - What kind of metrics is the most representable?
 - How to optimise or develop green DNN?

Project goals

- Profile the baler on CPU:
 - Perform the parametrics test varying the number of epoch, input data size, batch size of baler (AE)
 - Estimate the runtime metrics, latencies, bandwidth
 - Build the dataset that contains the measured metrics
 - Find the hot spots, bottlenecks and the most expensive operations of Baler
- Profile the baler on GPU:
 - Use different profiler to estimate the GPU runtime and memory
 - Estimate the Temperature of GPU during training/inference
- Estimate the energy consumption and C02 emission of Baler using CPU and GPU:
 - RAPM is the widely used approach to measure the energy cost
 - Check the possible tools to reduce the resource consumption, for example energy-aware pruning

Metrics that used to describe the DNN performance

Energy:

- Energy per floating-point operations, number of weights of a model, kernel size, number of layers, number of arithmetic operations
- Power Usage Effectiveness

 $p_t = \frac{1.58t(p_c + p_r + gp_g)}{1000}$ CO₂e

 $\mathrm{CO}_{2}\mathrm{e} = 0.954 p_{t}$

- Energy (Joules) total energy consumed by hardware and power consumption in Watt.
- Energy = Energy of Data + Energy of Layers
- Data moving energy (data flow) energy hard to estimate
- Static and Dynamic Power
- Energy per CPU, GPU, DRAM and System

https://luiscruz.github.io/green-ai/publications/2019-07-garci amartin-estimation.html https://arxiv.org/pdf/1906.02243.pdf

Computing resources:

- FLOP, FLOPS per second, a-FLOPS
- MAD (Multiply Addition)
- CPU/GPU utilization as percentage
- CPU/GPU time in hours
- Inference time, wall clock time
- Pipeline bubble time how long the divide is idle
- MAC (Memory access time)

https://arxiv.org/pdf/2002.05651.pdf https://luiscruz.github.io/green-ai/publications/2019-07-garci amartin-estimation.html https://arxiv.org/pdf/1906.02243.pdf

Tool that used to describe the ML model energy cost

Paper	Metric	Hardware	Estimation details and outcomes	Framework type		
https://arxiv.org/pdf/ 2304.00897.pdf	MAC, Joules	CPU	Layer wise, fixed data set Models:ResNet	experiment-impact-tracker codecarbon, psutil		
https://arxiv.org/pdf/ 2002.05651.pdf	FLOPS, Watt-hours, Joules	CPU, GPU	Proposed framework for the energy cost estimation	codecarbon, experiment-impact-tracker		
https://arxiv.org/pdf/ 2109.05472.pdf	FLOPS per Watt, Efficiency (Flops/Joule)	CPU,GPU	System	ptflops		
https://arxiv.org/pdf/ 1910.09700.pdf	CO2eq emitted	CPU/GPU	System consumption for different regions. Tips for the CO2 emission reduction	Machine Learning Emissions Calculator, mlco2		
https://arxiv.org/pdf/ 1906.02243.pdf	Power Usage Effectiveness, CO2	CPU,GPU 8 NVIDIA P100 GPUs	Models: Tranformer, ELMO,BERT, GPT-2	nvidia-smi RAPL power meter		
https://arxiv.org/pdf/ 1710.05420.pdf	energy-precision ratio		Tranformer models	NeuralPower		

Metrics that used to describe the DNN performance

Paper	Metric	Hardware	Estimation type	Framework type	
<u>https://arxiv.org/p</u> <u>df/2304.00897.pd</u> <u>f</u>	Joules	CPU	Layer wise, fixed data set Models: ResNet	experiment-impact-tracker codecarbon	
<u>https://arxiv.org/p</u> df/2002.05651.pd f	floating point operations	CPU, GPU		experiment-impact-tracker	
<u>https://arxiv.org/p</u> <u>df/2109.05472.pd</u> <u>f</u>	FLOPS, "peak FLOPS"	GPU	For whole system. Model: CV, NLP	nvidia tools	
<u>https://arxiv.org/p</u> <u>df/2110.12894.pd</u> <u>f</u>	FLOPS, MAC, CPU/GPU Type	CPU, GPU, or TPU	Transformers, Universal Transformers and Switch Transformers	efficiency misnomer	

Setup:

DRAM: 16GB CPU: M1 CPU count: 8 Platform system: macOS-10.16-x86_64-i386-64bit Python version: 3.8.5

Model: AE Number of parameters of Model: 61.54 k Data: HEP data Epoch: 5/100/500 Compression ratio: 2 Data dimensionality: 1 Batch Size:512/1024

```
class AE(nn.Module):
 # This class is a modified version of the original class by George Dialektakis found at
 # https://github.com/Autoencoders-compression-anomaly/Deep-Autoencoders-Data-Compression-GSoC-2021
 # Released under the Apache License 2.0 found at https://www.apache.org/licenses/LICENSE-2.0.txt
# Copyright 2021 George Dialektakis
def __init__ (self, n_features, z_dim, *args, **kwargs):
     super(AE, self).__init__(*args, **kwargs)
     self.activations = {}
     # encoder
     self.en1 = nn.Linear(n features, 200, dtype=torch.float64)
     self.en2 = nn.Linear(200, 100, dtype=torch.float64)
     self.en3 = nn.Linear(100, 50, dtype=torch.float64)
     self.en4 = nn.Linear(50, z dim, dtype=torch.float64)
     # decoder
     self.de1 = nn.Linear(z dim, 50, dtype=torch.float64)
     self.de2 = nn.Linear(50, 100, dtype=torch.float64)
     self.de3 = nn.Linear(100, 200, dtype=torch.float64)
     self.de4 = nn.Linear(200, n_features, dtype=torch.float64)
     self.n features = n features
     self.z_dim = z_dim
 def encode(self, x):
     h1 = F.leaky relu(self.en1(x))
     h2 = F.leaky relu(self.en2(h1))
     h3 = F.leaky relu(self.en3(h2))
     return self.en4(h3)
def decode(self, z):
    h4 = F.leaky_relu(self.del(z))
     h5 = F.leaky relu(self.de2(h4))
     h6 = F.leaky relu(self.de3(h5))
    out = self.de4(h6)
     return out
 def forward(self, x):
     z = self.encode(x)
     return self.decode(z)
```

cProfile analysis (training)

∼:0(<built-in builtins.exec="" method="">) 76.1 s</built-in>									
baler.py:15(<module>) 76.1 s</module>									
baler.py:24(main) 73.7 s									
baler.py:63(perform_training) 73.7 s									
helper.py:315(train) 70.7 s									
training.py:130(train) 70.7 s									
training.py:29(fit) 70.7 s									
_tensor.py:428(backward) 36.8 s	module.py:1494(_call_impl) 20.4 s								
initpy:106(backward) 36.8 s	models.py:58(forward) 20.0 s								
~:0(<method 'run_backward'="" 'torchcenginebase'="" objects="" of="">) 36.7 s</method>									

Profiling using Scalene. Compression and Decompression

Time:54%,34%,10% Memory:4.074GB, 6.625GB Decompression took: 0.826 minutes **Energy Estimation using code-carbon**

For 5 epoch training operation:

Energy consumed for RAM : 0.000042 kWh. RAM Power : 6.0 W Energy consumed for all CPUs : 0.000035 kWh. Total CPU Power : 5.0 W 0.000078 kWh of electricity used since the beginning.

Compression:

Energy consumed for RAM : 0.000026 kWh. RAM Power : 6.0 W Energy consumed for all CPUs : 0.000021 kWh. Total CPU Power : 5.0 W 0.000047 kWh f electricity used since the beginning.

Decompression:

Energy consumed for RAM : 0.000075 kWh. RAM Power : 6.0 W Energy consumed for all CPUs : 0.000063 kWh. Total CPU Power : 5.0 W 0.000138 kWh of electricity used since the beginning.

Timeline

- 19.06 30.06
 - Hands-on tests and code analysis of Baler and writing of document on parallelization improvements. Test the framework locally using laptop/desktop. Conduct the research about possible ways how to improve the efficiency of the training/inference of Baler.
- 03.07 17.07
 - Work on the deliverable number 2a. Define and test profiling metrics for CPU (list metrics, tests different ones, choose a final metric), compiling results into a presentation. The task was performed in collaboration with Google Summer of Code HSF student Manas Pratim Biswas.
- 17.07 31.07
 - Work on the deliverable number 2b. Define and test if of the profiling metrics for GPU. Perform GPU tests and compile results into a presentation.
- 31.07 14.08
 - Test code and scripts (from R. Cardoso) related to the green software analysis for estimation of GPU energy consumption, link to GPU profiling done before.
- 14.08 28.08
 - Compare results from R. Cardoso's scripts and references to green software metrics. Compile findings into a presentation.
- 14.08 28.08
 - Apply ML-specific energy consumption metrics to Baler and compile results into a presentation.
- 31.08 15.09
 - Wrap up results into a report

Current status

• Reviewed the possible profilers for the CPU and GPU. Make a reading list and documents with the paper review

• Profiled the baler using CPU, spotted some weak points that related to the redundant copying operation

• Estimated the energy consumption and CO2 emission for training/inference using CPU/GPU

• Working repository: <u>https://github.com/software-energy-cost-studies/profiling</u>

Thank you for the attention!