Particle accelerators

Part I: principles and design, particle physics colliders

Norwegian Teachers at CERN February 19-20, 2024

Prof. Erik Adli Department of Physics, University of Oslo, Norway <u>Erik.Adli@fys.uio.no</u>

The 27 km LHC at CERN

Particle accelerators and CERN

Most fundamental particles have been discovered using beams from a particle accelerator.

Discovery range increased as accelerators have become more powerful.

CERN: a particle accelerator laboratory -

delivers unique particle beams to experiments (high energy, intense, good quality).

The dawn of particle accelerators

In 1909 E. Rutherford's team, in Manchester, shot alpha-particles from a radioactive source towards a gold foil. The scatter results were surprising. To explore the tiny, very energetic particles are needed.

..." It has long been my ambition to have available for study a copious supply of atoms and electrons which have an **individual energy far transcending that of the \alpha and \beta particles from radioactive bodies**. I am hopeful that I may yet have my wish fulfilled". Rutherford (1927)

Particle acceleration: how many eV does your particle gain?

A simple way to make an electrostatic acceleration, a cathode emitting electrons and an anode, at a higher potential, pulling the electrons towards it. Energies ffrom **cathode rays**: few 10 keV

Electric breakdown limits electrostatic accelerators to a **few MeV** of total energy gain (same order as alpha radiation).

Modern accelerators: oscillating electromagnetic field

R. Wideröe, Archiv für Elektrotechnik, July 1928, **21**, 4, pp 387–406 :

XXI. Band. 1928. Wideröc, Ein neues Prinzip zur Herstellung hoher Spannungen.

3. Die experimentelle Untersuchung.

Based on an idea by G. Ising, Arkiv för matematik, astronomi och fysik. 18, 4 (1924))

Bild 10. Vergleich der gemessenen mit den berechneten Werten für den Spannungswirkungsgrad bei verschiedenen Wellenlängen.

Widerøe accelerated Kalium beams to 50 keV kinetic energy, equal to twice the applied voltage.

This is not possible using electrostatic voltages.

The importance of Widerøe's demonstration:

By using time-varying fields, oscillating at radiofrequency (**RF**), particles can **in principle be accelerated to any energy**, using a limited peak voltage.

Widerøe-type RF-LINAC ("LINear ACcelerator)

Today: RF-fields enclosed in metal **RF-cavities**, is used in high-energy particle accelerators.

Example of linear accelerators

The 3 km **Stanford Linear Accelerator**; 2.8 GHz normal conducting cavities

Fig. 3. Preliminary design of a high-beta cryomodule from IPN Orsay and CEA Saclay.

The 1 km **European Spallation Source**; 752 MHz superconducting cavities

RF-acceleration is equally important for circular accelerators:

Description of particle beams bunches 0.5 N > -22 -0.50 2 $^{-1}_{1}$ 50 0.5 0 0 0 -0.5х -1 -2 $^{-2}$ -50 Z х $\psi = \psi(x, x', y, y', z, E)$ $x' = p_{x/p}$

Particle beam: 6D distribution, two transverse planes + one longitudinal plane.

- Phase-space area is conserved under beam transport
- Metric of how well the beam can be focused, named **emittance**

Focusing of particle beams

What *beam parameters* characterizes a particle collider?

I) Particle type

p, p̄, Pb, Au... e⁻, e⁺, μ, γ...

II) Centre of mass energy

Centre-of-mass energy sufficient for particle production:

 $E_{CM} >= mc^2$ Wavelength of probe should be smaller than the object you want to study. De Broglie wavelength: $\lambda = h / p$ (~ 1 Å for 100 MeV e-)

III) Luminosity

The Large Hadron Collider

youtube: the LHC Accelerator

LHC and the CERN accelerator complex

- LHC is responsible for accelerating protons from 450 GeV up to 7000 GeV
- 450 GeV protons injected into
- PS injects into the SPS
- LINACs injects into the PS
- The protons are generated by a proton source where a H₂ gas is heated up to provide protons
 - The limitations in the earlier part of the acceleration chain originates from space charge -> collective effects lecture

LHC lavout

LHC cavities

- Superconducting RF cavities. Standing wave, f = 400 MHz
- Each beam: one cryostat at 4.5 K, 4+4 cavities in each cryostat
- 5 MV/m accelerating gradient, 16 MeV energy gain per turn

LHC bending magnets

8.3 T maximum field (allows for 7 TeV per proton beam). Generated by a current of 12 kA in the superconducting Rutherford coils.

Developments for higher energy hadron colliders (HE-LHC, FCC) : Nb₃Sn, HTS

LHC beam focusing

Collisions at LHC

Proton-Proton

Protons/bunch Beam energy Luminosity 10¹¹ 7 TeV (7x10¹² eV) 10³⁴ cm⁻² s⁻¹

Event rate in ATLAS : $N = L \times \sigma (pp) \approx 10^9$ interactions/s Mostly soft (low p_T) events

Interesting hard (high- p_T) events are rare

Selection of 1 in 10,000,000,000,000

Unanswered questions

- Three families? 19+7 free parameters?
- Nature of the Higgs field?
- Difference matter-antimatter?
- 95% of universe non-baryonic matter? Dark matter?

Theories and predictions

- Supersymmetry (SUSY)
- Extra dimensions
- String Theory

Experimental results required to guide us!

Searches and analyses Direct discovery of new physics. e.g. dark matter particle q W^{\pm} W^{\pm} $\tilde{\chi}_{1}^{\pm}$ $\tilde{\chi}_{2}^{\pm}$ $\tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{1}^{0}$

 Constraining theories, e.g. exclude SUSY parameter space

Precision measurement as proof [®] for new physics, e.g. deviation from coupling parameters

Particle type: proton-proton versus e⁺ e⁻ colliders

- Initial state not available
- Strong background, busy events, filtering, triggers

- High signal-to-noise; cleaner events
- Well defined initial stage
 - Higgs decay width can be established, model independent coupling measurements,

Recent colliders at CERN

E_{cm} [GeV] "LEP changed high-energy physics from a 10% to a 1% science." H. Schopper

Future machine: per mille precision, model independence

Energy and luminosity limitations, for rings and linacs

Energy challenges

25 m5

Luminosity challenges (examples)

Circular proton-proton colliders

LHC: 14 TeV collision energy, **limited by 8T** SC magnet field

$$p=eB\rho$$

Collective electromagnetic effects constrain charge

Circular e- e+ colliders

Synchrotron radiation loss limited LEP collision energy to 209 GeV.

e-

Synchrotron radiation loss constrains charge

Linear e- e+ colliders

Reaching high accelerating RF fields. **100 MV/m** is the state of the art. 10 km <= 1 TeV.

e+

Colliding beams with nm width, as opposed to μ m width for LHC, required for the same luminosity.

The Future Circular Collider as e- e+ Higgs Factory

Use the FCC tunnel first for **e- e+ collisions**, up to 365 GeV (1.7 x LEP energy). Current adjusted to keep **synchrotron radiation loss at 100 MW** for all energies.

No technological show stoppers. Est. cost: ca 12 BCHF. FCC-hh magnet development in parallel.

The Future Circular Collider - FCC-hh

Linear e⁺e⁻ Collider Projects

The Compact Linear Collider, CLIC

Main linac technology: two-beam scheme. **100 MV/m**. Normal conducting Cu 12 GHz cavities, First stage **380 GeV, 11 km**. Upgradable to 3 TeV, 50 km.

The International Linear Collider, ILC

Main linac technology: **super conducting RF 1.3 GHz SW cavities**, **31.5 MV/m** First stage **250 GeV**, **~20 km**. Upgradable to 1 TeV, ~50 km.

Linear Colliders:

Fly-through of how to make 500 GeV collisions with superconducting RF technology

FI@UiO research

The CLIC Two-Beam scheme

FI@UiO research

Experiments at the CLEAR test-facility

Extra

Comparison of machine physics potential: examples

Measurements of the Higgs potential could be done at a FCC-hh, or at a Multi-TeV e- e+ collider **Current opinions seem to be: an e-e+ Higgs factory desired as first machine** "The guaranteed physics of new machines is centered on revealing **the deeper nature of the Higgs**." Nima Arkani-Hamed

Novel accelerator concepts: muon collider

Novel concepts: boost accelerator performance with **radical change in technology** Very promising and interesting research, many hurdles to overcome before use in a collider.

Novel accelerator concepts: plasma acceleration

Principle: drive a wave in plasma with particle or laser beams

RF cavities: limited by metal surface break down **Alternative: high fields inside plasmas:**

 Plasmas of a large range of densities can easily be produced. Fields scale with density. Very high fields can be generated.

• Plasmas are already broken down. The plasma can **sustain the very high fields.**

Typical numbers : Plasma density ~ $10^{16-18}/cm^3$ Field scale: 10-100 GV/m Length scale : $\lambda_p/2\pi$ =10-100 µm

Great experimental progress recent years: 50 GV/m accelerating fields, positron acceleration, AWAKE... See UiO-thesis of Carl A. Lindstrøm

TW-PW laser technology

Plasma lenses for particle beams

See parallel session talk by Kyrre Sjøbæk (UiO)