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Particle therapy (protons ions, e...)
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Energy loss of heavy charges particles — Bethe-Bloch
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Stopping power of protons in water according to PSTAR
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X-ray beams (IMRT ) Proton beams
from 7 directions from 3 directions

Protons

Spinal cord Spinal cord

pictures: Medaustron



Beam transport lines

25m
(gantry size)

Accelerator challenges:

* Stable and precise beam delivery

* Strong bending and focusing fields

* Higher accelerating gradients,
MV/m

i

Can particle accelerator R&D drive size and cost down?


http://www.klinikum.uni-heidelberg.de/index.php?id=7591

Proton therapy in Norway (2025 ->)

INSTITUTE FOR CANCER RESEARCH

The Radium Hospital site after completion of new clinical bullaings and
the new proton therapy centre Q1 2024 (new bulldings with green/

Veidekke ASA: Construction job at the proton centre in Bergen Vo
- Veidekke ASA



Photon Sources

Synchrotron radiation emitted from accelerated charged particles can
produce very intense radiation at X-ray frequencies
The last decades, vast increase in the use of synchrony radiation for photon

science. Some uses: material sciences; life sciences; earth sciences.

Radiation from ultra-relativistic

/ electrons: forward direction. ESRF, Grenoble
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Structure of a protein of HIV-1,
as studied in light sources

v

Accelerator challenges:

* High-brightness, high-frequency
photons.

* Coherent, narrow-band, short
duration photon radiation, from
charged particle beams

. : v hutch
B insertion devices

B straight sections
@ bending magnets

Synchotron light source: GeV e- beams



Synchrotron radiation - revisited
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Photon beam:

photon radiation
has wave fronts
that can interfere.
Wavelength on the

order of the probe.

Diffraction imaging

Probe: Detector:
* Photons scatter from * Photons from different
electron cloud. scattering point have different
* Scattered lightis a phases, and create
spherical wave starting interference pattern.
at the interaction point. * Image is the Fourier transform

of probe.

\/

Reconstruction:
* |nverse Fourier transform
* But no phase information (phase problem )



Diffraction imaging example

Pharmacological development are nowadays still based to a good extent on trial and error.

* Tamiflu (anti-flu) was the first
medicament that was specifically
tailored.

* Knowledge about the atomic

structure of the virus was used

(Synchrotron Light Source).

This helps to make drug research

more systematic and efficient.

* The action of Viagra was
understood only 2003.

* The drug was created for the first .
time in 1989.



Photon science:
Photon interaction with matter
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Neutron spallation sources, ADS
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Neutron spallation sources: intense flux of protons at high energies.
Lund, Sweden: building Europe’s first neutron spallation source, the European
Spallation Source, using superconducting technology.



Neutron science gives new information
on microscopic scales

Charge neutral Nuclear interactions Mass
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-ray Cross section
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neutron cross section (x 1.5)
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Example: neutrons see the light elements

Simple Engine

Co2 sequestration
Fracking

Courtesy of the NIAG group, PSI,
Switzerland.

Courtesy of S. Hall, Lund Univ.



Advanced accelerator R&D:
Better and smaller accelerators?
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Novel accelerator research

Cutting edge accelerator physics research, with the objective of
overcoming limitations of conventional accelerator technology.

Very high frequency normal conducting rf Dielectric structures
structures (~100 GHz to ~THz)

sio,
~1.0 THz,

structure

(SLAC)

Plasma wakefield
acceleration

Laser based
acceleration "DLA"
Several 100 MV/m
demonstrated
(SLAC)

Feed of laser
beam into Si
structure

The topic here.




Novel accelerator concepts: muon collider

Promising concept, many hurdles to overcome before use in a collider.

Muon collider pros and cons

Negligible synchrotron radiation

Main challenge: T,=2.2ps — « Mitigate radiation hazards

* Produce sufficiently dense muon beams
* Rapid acceleration

Proton Driver
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Protons on target
hadronic showers,
Pions decay into muons

Muon are captured,
bunched and then cooled.

Precision, plus discovery potential!

3 TeV ~ LHC
14 TeV ~ FCC-hh;
30 TeV ~ “amazing"

Rapid acceleration
to collision energy

Collision

500

> 200
e
L o — lepton
50 . vs protons$
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Novel accelerator concepts: plasma acceleration

RF cavities: limited by metal surface break down
Alternative: high fields inside plasmas:

- Plasmas of a large range of densities can easily
be produced. Fields scale with density. Very
high fields can be generated.

- Plasmas are already broken down. The plasma
can sustain the very high fields.

plasma electrons
field ionization

| e T Typical numbers :
accelera‘tlo;n_-,,_-,‘:-'_ G electrons Plasma density ~ 1016-18/cm3
‘ ' Field scale: 10-100 GV/m

Principle: drive in pl
rinciple: drive a wave in plasma Length scale : 1 ,/27=10-100 ym

with particle or laser beams

Plasma lens

Plasma acceleration
of positrons

Credit: Frank Tsung, UCLA TW-PW laser technology
Great experimental progress recent years:
50 GV/m accelerating fields, positron acceleration,
AWAKE...

Plasma lenses for particle beams



Breakdown limits and plasma

In metallic structures : break down of the surfaces, creating electric discharge. Field
cannot be sustained. Current practical limit (CLIC): order of 100 MV/m gradients..

Break down of field limits the gradient.

ENT = S00KV TD18 KEX-SLAC . X
A WD #200mm Pat B Tl 30 @
Sional A » SE2 Up-Syeam - Ins N Dste § Ses 2010

Alternative to high fields in

vacuum: high fields in plasmas:

collection of free ions and electrons.

* Plasmas of a large range of densities can
be produced. Fields scales with density.
Very high fields can be generated.

* Material is already broken down. The
plasma can sustain the very high fields.
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Gauss law : estimate fields in a plasma wave

Assume that the plasma electrons are pushed out of a small volume of neutral plasma,

with plasma density ny=n_=n,, :

Scale of electrical fields (1D) :

Gauss’ law:

P €Njons ~ ENQ

V-E=12 ~

Assume wave solutions:

Apply Gauss’ law:

€0 €0 €0

E ~ Eg exp(—iw,/cz)

Plasma electron frequency :

Wp =—

noe?
e

eng W
— =Ey— = Ewp =
€D C

ecng

EWop

~J 1/’]’LO

Field scale, E,,;
“wave breaking
field”

Typical plasma density, available by many types of plasma source :

ng = 1el7/cm3 : Eyg = 30 GV/ M
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Development of novel accelerators

Currently a large experimental R&D effort to develop
novel accelerators based on plasma and other

technologies :

1. Meter scale plasmas

v
1. High gradients
v
1. Low energy spread
v
1. High efficiency
v
1. Multi GeV e* PWFA
v

1. Emittance preservation

29
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Development of novel accelerators
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FACET two-bunch results
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AWAKE: proton driven
plasma wakefield at CERN

AWAKE is installed in
CNGS Facility (CERN Neutrinos to Gran Sasso)
—> CNGS physics program finished in 2012
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AWAKE: successful Acceleration of electrons in a proton driven plasma

Electron source system
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Compact focusing: The CERN-Oslo plasma lens

a) Normal conducting magnetic focusing quadrupole c¢) Principle of an

b) The Oslo active plasma lens

active plasma lens focusing device

at the FACET high energy test facility

/  Beam direction
(electron beam)

Electrode
at -20 kV

Inside the
capillary: A

20 mbar Argon

Plasma-filled capillary
< Electron

Electrode
at-20 kV

Inside the
capillary:
20 mbar Argon

Electrode Electrode

Electrode
at ground

Capillary
diameter 1 mm

* An experiment to test the operation and characteristics of an active plasma lens.

Ela trode
at ground

Capillary
diameter 1 mm
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The Energy Frontier

The role of particle accelerators
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The last particle predicted by the standard model,
discovered at the LHC in 2012.
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Several Nobel prizes for accelerator technology,
and > 20 Nobel prizes where accelerators where used.



