

Photodetachment of H⁻ at the GBAR Experiment

Lance Lampert

22-6-23

Mentors

Dr. Pauline Comini

Dr. Laszlo Liszkay

Motivation for GBAR Experiment

Our understanding of gravity is incomplete.

- Quantum Field Theory says nothing about gravity
- Dark Energy and Dark Matter linger

Test the Weak Equivalence Principle with antimatter.

- No (meaningful) direct measurement of the interaction of gravity on antimatter exists.
 - Best and only direct result from free fall: $-65g < \bar{g} < 110g$ from ALPHA

Require a stable, neutral particle for freefall.

- Cannot use antineutrons, positronium...
- Next simplest particle: antihydrogen!

Wikipedia

GBAR Experiment Overview

- Excited positronium reacts with slow antiprotons
- Several particles are produced and are directed based on their charge
- Antihydrogen ions directed to free fall chamber
 - Cooled, then photodetached, and finally, freefall.

GBAR Collaboration, CER<u>N-SPSC-2023-008</u>

Photodetachment of H⁻

Benchmark: Cross-section measurement of $\overline{H} + Ps \rightarrow \overline{H}^+ + e^-$.

• Can use hydrogen as a proxy for antihydrogen: $H + Ps \rightarrow H^- + e^+$

Have access to H⁻ beam from ELENA

• Photodetach H⁻ upon entering RC.

Progress so far & tasks ahead:

- Installing new optics for \overline{p} / H⁻ line.
- Aligning optics for pulsed Photodetachment laser.
- Calculating photodetachment probabilities based on experimental parameters.

