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Part 1: The present
 Machine learning in particle physcs

Part 2: The future
e The revolution has arrived




Particle physics is perfect for ML
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Ex. #1. Top quarks at the LHC

Top quark (mass = 170 GeV)
* Decays to W+b, then W decays to u and d quarks (mass = 0.010 GeV)
e Quarks look like “jets” at colliders

6 jet tt event



Boosted top quarks

Models of beyond-the-standard model
physics with very heavy new particles
often produce ultrarelativistic top quarks

Triply-tagged
ttbar candidate!
Top, W, and b!

Backgrounds are now 2 jets not 6 jets
* 10*times bigger than signal
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MDS et al. arXiv:0806.0848

Conventional top-tagging

v
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1. Look for big jets (R=1.2)

2. with subjets within the jet

3. Analyze the subjets
* look for W boson, W/top mass peak, helicity angle, etc.

10°

1000

signal efficiency = 0.4
background efficiency= 0.006

do/dM (fb/100 GeV)
= o
(=] (=}

12
1
[sa]
01500 2000 2500 3000 3500 4000 Ig
%
dijet/tt invariant mass M (GeV) :
]
10° C]EJ
3
10t ] 30%
3 background down by £ ) ;
1000} - imrovemen
s 20,000! g 4
2 1oof 8 N &
Z ol S 2f------------ Ao
5 n
1 ,L_state of the art 2008
0.0 01 02 03 04 05 06 07 08 09 1.0

1500 2000 2500 3000 3500 4000 Signal efficiency Es
dijet/tt invariant mass M (GeV)



Machine learning approach

Take some tool highly engineered for another puropose and shoehorn it into physics

Convolutional networks for facial recognition Point clouds/deep sets

for self-driving cars

-
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Machine learning methods are much better

12
@
|% 10 traditional
It collider
C .

i physics
g 8
()
3 1980-2020
S 6
£
g,
T ommmm e 3.4
Y Aooooooooooooooooooes SOTA 2014 -~~~ 2.6
=y SOTA 2008
[7p]
* ML requires less “thinking”
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* Provdies less physical insight




ML has touched all areas of particle physics

Quarks v Gluons Equivariant networks
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1810.11509 Simulation String theory
Variational

autoencoders

1811.10276 Anomaly

Challenges

211006948 detection Symbolic
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https://iml-wg.github.io/HEPML-LivingReview/resources/ P hySICS for ML

* Compendium of particle physics ML papers QFT/NN correspondence

e 1065 papers as of September 2023




Ex. 2. Simulation/Unfolding

* Simulating events is accurate but slow
e Full simulation (GEANT) can take minutes per event!
*  Without improvements, we will not be able to keep up with needs of LHC
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* We can use machine learning to improve the simulations
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Ex. 3. Anomaly detection

Variational autoencoders: [Farina,Nakai,Shih 1808.08992]
* Compress the background/data to a low-dimensional latent space

* Uncompress back to physical space.
e Events with large reconstruction error are anomalies

e.g. Anything else
Train to reproduce has larger
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Ex. 4. Computing Feynman diagrams

Computing Feynman diagrams often gives long expressions Dersy, MDS, Zhang arXiv:2206.04115

1 L f@) =9 (—Lig(x) ~ Li (%) — Lig (_zii\/ﬁ»

F s e +4(—Li3(3:)+Li3 (xil)+Li3(a:+1)—Liz(—z)ln(x+1))

%& >\‘i§ 4 <Liz(:c +1)In(z+1) + %ln3(m +1)+ % In(—2) In(z + 1))

* Expressions can be very complicated (hundreds of terms)
* Expression often has a dramatically simpler form

f(z) = —Lis(x®) — Lig(z?) + 4¢s

* No known algorithmic way to simplify the initial forms

Simple form is useful, not just pretty
* No spurious singularities/branch points
e Clarifies the analytic structure of the scattering amplitude



Simplification of Polylogarithms

TWO mac h Ine I earnin g d p p roac h es Reflection EDE, Inversion EDE' Duplication EEE'

1. Reinforcement learnin g “TLip() - Tlip(1 —x) | Tt > TLip (%) ~TLip(x) > TLin(~x) — %Liz(xz)

* Used by Alpha Zero — world’s best chess program ) _ : I
ic idea: = N i
Basic idea: % 1y I I

* apply known polylog identities like moves in a game - I
e train by learning to reverse scrambling steps I I

]

2. Transformer networks German: Unkrautvernichtungsmittel

f(z) =9 (—Lis(w) — Lis (_2:/3;) ~ s (‘i—f/?:))

+4 (—Li3(z) + Lis (z i 1) + Lig(z + 1) — Lip(—2) In(z + 1))

e Used by large langauge models
* Learnto ‘guess” answer

translate from complicated to simple —4 (Liz(w+1)ln(w+1>+ éln3(w+1)+%ln(—w) 1n2(x+1))
translate _ N
English: Herbicide
f(a:) = —L13($3) — L13($2) + 443

* Both methods work well (>80% success)
* Transforms do better: 91% success up to transcendental weight 4



B. The future

Markus Graf, MidJourney July, 2023

“Retired Mario”
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Large Langauge Models

What is a large language model?
* Designed to generate human-like text
e Usually transformer-autoencoder deep neural networks with attention:

Attention is all you need
A Vaswani, N Shazeer, N Parmar... - Advances in neural ’oceedings.neurips.cc

. to attend to all positions in the decoder up to and includin position. We need to prevent

We implement this jpetee=o aled dot-product attention by masking out (setting to —«) ..
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Synapses/parameters

Machine vs. Biological intelligence

Biological intelligence grows by a factor of 2 in one million years
Machine intelligence grows by a factor of 10 in 1 year

MDS, Nature reviews physics (2022)

1022 Should artificial intelligence be interpretable to
humans?
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Both Al and biological intelligence grow exponentially
Factor of 10° difference in exponent
Intersection, when machines and biology have comparable "intellegence” is 2023



Concerns about the future of language models

1. Quality
* Facts are “hallucinated”
* Machines are just memorizing and parroting data

2. Atrophy
*  We will lose the ability to think and to write for ourselves
e Students/adults will use LLMs to cheat

3. Scalabilty
* The exponential growth cannot continue
* Training data, energy, materials are limited

4. Interpretability
* Humans must be able to understand the machines
* Intellectual pursuit is a fundamentally human endeavor

5. Controllability
e Al cannot be controlled
*  Machines will take over the world and kill us all



1. Quality: Is GPT 4 garbage?

Fabrizio Fanasa, Midjourney, April 2023



GPT4 can solve most undergraduate physics problems

MA Two blocks with equal mass m are connected with an inelastic string. One of the blocks is
placed on a table, the other hangs over the edge. Determine the acceleration of the masses if
the mass of the string is neglected and there is no friction.

Given: For the block on the table:

. q There's no vertical motion, so we'll only consider the horizontal direction.
Two blocks with equal mass m.

* explaining steps

* The string is inelastic (which means it does not stretch or change length). SF, =T
* Mass of the string is neglected. ma=T ° . .
* Noffriction T=ma (Bavation 1) not just guessing

For the block hanging:
Let's consider the forces involved:
YF,=mg—-T
1. The weight of the hanging block, Fy,4,ity, Which is equal to mg, where g is the ma =mg —T
T =mg —ma
T =m(g—a) (Equation 2)

acceleration due to gravity.

2. The tension in the string, T'.

From Equations (1) and (2):
When the system is released, the hanging block will start moving downward, pulling the
block on the table along with it. Since there's no friction, the only opposing force on the ma =m(g —a)

ma = mg — ma
hanging block is the tension 7" in the string. 2ma = mg

a=1

2 a/ fr—

Thus, the acceleration of the two blocks will be half the acceleration due to gravit

Let's apply Newton's second law to both blocks:

g
2

MA The string is going through the table. Make it hanging off the edge instead. And make the
string not right next to the blue block

m Write code to generate a figure for this problem .

@ To visualize the problem, we can use Python with the “matplotlib" library to draw the twu that's better. But the upper part of the string is not showing
blocks, the table, and the string connecting them. Here's a simple way to generate such a YYou're right; | apologize for that oversight. Let's correct the visualization to show the strin
o hanging off the edge of the table and provide some space between the string and the blo
gure: onthe table.
T de Here's the corrected code: @ | apologize for the oversight. Let's ensure the upper part of the string connects the block ¢

the table to the edge of the table.

Two blocks connected by an inelastic string

HE Block on table
HEm Hanging block
= String




It can write new problems

Write a homework problem about Vienna for a physics course

Topic: Kinematics and Dynamics in Two Dimensions

Background: Vienna is famous for its efficient public transportation system, especially its
iconic trams. These trams often follow curved paths, making them an interesting subject for

a physics problem involving two-dimensional motion.
Given:

* Atram in Vienna starts from rest at station A and accelerates uniformly along a straight
path for t; = 15 seconds to reach a velocity of v = 36 km/h.

* The tram then enters a circular curve of radius R = 100 meters, maintaining a constant
speed.

* After completing half of the circular path, the tram exits the curve and decelerates

uniformly, coming to a stop at station Bin £ = 10 seconds.
Tasks:

1. Acceleration and Deceleration: Determine the magnitude of the tram's acceleration during
its uniform acceleration and deceleration phases.

2. Distance Covered: Calculate the total distance traveled by the tram from station A to
station B.

3. Centripetal Acceleration: While the tram is on the circular curve, compute its centi
acceleration.

4. Net Force on the Tram: If the mass of the tram is m = 30, 000 kg, calculate the ne
acting on it when it's halfway through the circular path. Assume that the frictional f
(which provides the necessary centripetal force) is the only horizontal force acting
tram.

5. Historical Context: The Austrian physicist Ernst Mach, who once taught in Vienna,

Hints:

* Use the kinematic equations for uniformly accelerated motion to find distances and
accelerations.
° The centripetal acceleration for an object moving in a circle of radius R at a constant speed
2
v
i.
* Remember to convert all units appropriately before performing calculations.

visgivenbya, =

Note: Disregard any effects of air resistance, and assume the tracks are frictionless except

for the necessary friction to keep the tram moving in a circle.

Really good problem. | would use it

in a course

Draw a figure for this problem

Circular Curve

Radius R

/

for his contributions to the understanding of supersonic motion and the Mach nur ) Acceleration Deceleration )
Station A Station B
tram were to travel at a speed equal to half the speed of sound in air (assuming a s| < Tr;m

sound of 343 m/s at room temperature), what would its Mach number be? Would s

speed be feasible for a tram in a city setting? Explain.



an it do graduate coursework?

MA Calculate the tree-level matrix element squared for $e"+ e”*- \to \gamma \gamma$
summing over spins and polarizations.

The processete™ — 77y involves the annihilation of an electron and positron to produce 0d @
two photons. To compute the tree-level matrix element squared for this process, we utilize ) ) o
. . 2. Square the Matrix Element and Sum over Spins and Polarizations:
Feynman diagrams and rules from Quantum Electrodynamics (QED).
At tree level, there are two Feynman diagrams for this process: ‘M ‘ 2= ‘M] + Mz ‘ 2
1. The electron and positron annihilate into a virtual photon, which then decays into two real For |M 2’ welll getterms like:

photons.

IS}

* * * *
The electron emits a photon, becomes a virtual electron, and then annihilates with the ‘MlMl 2 MZMZ’ and M1M2 + M2M1

] .
positron, which emits the second photon. LO 0 k I n g go O d

To compute these products, we need to use completeness relations for the spinors « and v

Leseaa i tin e cmel g i e R and for the photon polarization vectors €. After these steps, we'll obtain the squared matrix
1. Matrix Element for the First Diagram: element summed over spins and polarizations.
) o P ) ) ) '
Let's denote the momenta as: ¢~ with momenturn p, e with momentum p', and the two It should be noted that the detailed calculations would involve a lot of Dirac algebra, usage of

outgoing photons with momenta k and k'. . . . . . .
S spin sums, and metric tensor contractions. This above is a broad outline. If you need the

For the electron-positron annihilation vertex, the matrix element contribution is: detailed steps, including the actual Dirac algebra and calculations, that would be quite
—iey! lengthy.

For the photon decay vertex, the contribution is proportional to the metric tensor:
—ie’gh” . . g
MA write latex code to draw the feynman diagrams for this process

Thus, the matrix element for the first diagram is:
M = (—ie)*a(®)y v(p)e; (k) (k') g™
= e*a(p)y"v(p)e;, (k)e; (K)g"
For the process eTe™ — 77, there are two Feynman diagrams at tree-level. One diagram
involves the electron and positron annihilating into a virtual photon, which then splits into
1. Matrix Element for the Second Diagram: two real photons. The other diagram is similar but involves the exchange of the virtual
photon between the electron and positron.
The electron emission vertex gives:
—ieyt To draw these Feynman diagrams using LaTeX, you can utilize the ~feynmp ™ package. Here's
how you can do it:

The annihilation vertex into a photon gives:

*iE’YV

So, for the second diagram:
My = ea(p)y v(p)e; (K)e, (k)v"

et T et v

R These aren’t right, but
. Combine Bo lagrams:
M= M + M code compiles and isn’t far off




Can it do graduate coursework?

MA continue with the calculation

Alright, let's dive deeper into the calculation for the process ete” — oy 0 @ keep going until you get the answer

. « .
For simplicity, we won't use the full Dirac notation; instead, we will illustrate the procedure. I S It m e m o r I Z I n g ?

Recall our matrix elements:

My = Pl ) (B ) * No. It’s generalizing.

B

My = e*u(p' )y v(p)e; (K )es (k)" 1. Amplitude M;:
= Bl D * * (L)) ghV

1. Compute | M, |%: M12“ e/“(i’ bk ,U*(p)e;t*(k)/ey(k )9

Using the properties of the metric tensor and Dirac matrices, the squared amplitude is: =e u2(p )’y v(p)eﬂ(k)ey(k )(791“’)

o Py s = —eu(p)y"v(p)e’ (k)e, (k) . . .
IM? = e'a(p) 1o (p)o(p)y ul@) el (k)es (K )ea (k)es (K) g g e“a(p)y*v(p)e; (k)e, d h
' 2. Ampltude My Al is doing just what we
Given the completeness relations for the photon polarization vectors and spin sums for the Mz — ezﬂ(p’)'y"v(p)e* (k’)e* (k)'y"
v W

electron and positron spinors, we obtain:

ask students to do
|M,|? = e*(—g"*)(—g"?)Tr[y"(\slashedp + m)y*(\slashedp' + m)] Square of Mj:
= eTr[y*(\slashedp + m)y*(\slashedp’ + m)]g.agy, o
[ (\ p+m)y°(\ D' +m)]guagis MO =5 M [ Lea rn from p ractice

= X apins (8 )70 (0)F 3,01, €1 (K)ew (K ) (R)e (K)

SR s e = % ine [0 17#0() P (~gu) (~9) * Show your steps

. Compute | M,|%:

Using similar techniques as before: =4 Zspins [a(p')y*v(p)[?
|Ma[? = e*Tr[y”(\slashedp + m)y? (\slashedp’ + m)]gyagys = 4Tr[y*(\slashedp + m)~,(\slashedp’ — m)]
= 4T'r[y*\slashedpy, \slashedp'|
1. Compute the cross terms: ) R ) ) R
MM + Mo Us:rlmg‘lprop,ertles of Dirac matrices, this becomes:
Gl In any case,
Square of M:

2. Summing Over Spins and Polarizations:

I memorization is an

For electrons (and positrons):

_ Following a similar approach to above, we get: . .
D s Caardy ’ essential part of learning
spins V(0')U(P') = \slashedp’ —m
Cross terms:

For photons: * *
Do, € (k)€ (k) = =g fﬁﬁ:f A: ﬁrl

EPOI_ e#(k')e,*,(k/) = —g"¥ _ 2R€[847.7(17’)7“11(p)ﬁ(p)'y)‘u(p’)]
= 2¢* Re[u(p')7"v(p)o(p)vuu(p)]

These sums replace the individual spinor and polarization products in the matrix elements. Using properties of the Dirac matrices:

= Se“p"pL
1. Putting It All Together: 9
‘MP _ ‘M1|2 + |M2|2 +M1M* +M2M* Total squared matrix element: Answer |S Wrong
2 L [MP = |Maf? + [Maf? + MM + MM Right f | di dient
— Ret / 4,V 4 / [ ]
The result will be an expression in terms of the momenta of the particles. To obtain a _zz f;f#,Jr Seip pﬂ+8€ PPl Ig ormuias an Ingre ients
= 24e*p'p),

numerical result for a specific scattering event, these momenta would need to be provided.

* Student could easily fix

This is the squared matrix element for the process e e~ — 77, summed over spins and

This outline provides an approach, but the full calculation requires further algebra, including
. i i . i i polarizations. Here, p and p' are the momenta of the electron and positron, respectively. The
the detailed evaluation of traces of gamma matrices and the use of various Dirac matrix
actual differential cross-section and total cross-section would require further integration
identities. Such calculations are standard in QED textbooks or in research articles that .
over the final-state phase space.
provide explicit computations.



Can it help with research?

Research question a graduate student asked me last week

what is consistent slicing of the bulk in an RS model?

In the context of Randall-Sundrum (RS) models and other brane-world scenarios, the term
"slicing" often refers to a specific coordinate choice or parameterization of the 5-
dimensional bulk spacetime. Different slicings give different pictures of the 5-dimensional
spacetime and can be more or less convenient depending on the specific problem being

addressed.

In the original RS models, the 5-dimensional metric was often written in terms of the so-
called conformal coordinate z, with the metric given by:

ds? = e’2k|z|nuyda:“daz” + dz?

where Nyv is the 4-dimensional Minkowski metric, & is a scale related to the curvature of the

5D spacetime, and z is the extra-dimensional coordinate.

However, in certain calculations, especially those involving gravity or cosmology on the
brane, it's sometimes more convenient to use a different slicing, known as the Gaussian
Normal (GN) coordinates. In the GN coordinate system, the brane is always located at a fixed
value of the extra-dimensional coordinate (often chosen to be zero), and the metric takes on
aform like:

ds® = n®(y)nudatdz” + dy?

where y is the new coordinate and n(y) is the warp factor.

The consistent slicing of the bulk refers to a way of expressing the 5D spacetime that
consistently embeds the 4D brane in it. This can be especially important when studying

phenomena like the cosmological evolution of the brane universe.

It's important to note that different slicings are just different coordinate choices: they all
describe the same physical 5-dimensional spacetime, but the mathematics might be

simpler in one slicing compared to another depending on the specific problem.

* Provides useful explanations of
subtle concepts

WARNING!

Hallucinates references and quotes

(as of 2023)




Text generation

MA Write an abstract for a public lecture by matthew schwartz in vienna on Machine Learning
and the Future of Particle Physcs

Machine Learning and the Future of Particle Physics
Public Lecture by Prof. Matthew Schwartz@rd Unive@/ it knows who | am

Prof. Matthew Schwartz, renowned for his contributi quantum field theory and the
author of "Quantum Field Theory and the Standard Model", will elucidate the transformative
role of machine learning (ML) in particle physics. As the data influx from modern
experiments like the Large Hadron Collider becomes overwhelming, ML offers

groundbreaking approaches to data interpretation, anomaly detection, and the prediction of

particle interactions. Join us to explore hpw this intgggection of ML and physics is reshaping

our quest to unckitand the fundamenfal natyy€ of the universe.

it knows what my talk is about!

Chat GPT’s ability to write and edit text is astounding
* Particularly useful for non-native speakers




Code generation

can you write a script to download all the pdf files from a website?

Certainly! The task of downloading all the PDFs from a website can be accomplished with a

web scraping tool like Beautiful Soup in Python.

However, you should be aware that web scraping is not always legal or ethical. Always
consult a website's “robots.txt" file to determine if scraping is allowed and never overload

a website's servers or download proprietary content without permission.

Below is a basic script using Python's "requests™ and "Beautiful Soup" to scrape and

download PDF files from a given website:

python [j Copy code

LIHJJ“,.\I, - 0Ss
import requests
from bs4 import BeautifulSoup




Advanced data analysis
Advanced data analysis ()
Try a version of ChatGPT that knows how to write and execute python code, and

can work with file uploads. Try asking for help with data analysis, image
conversions, or editing a code file. Note: files will not persist beyond a single
session.

MA Generate data for the the height of a bouncing ball including the effects of friction over the
course of 5 bounces with 100 data points as a csv file

@ Certainly! To simulate the height of a bouncing ball with the effects of friction, we will use the

following assumptions:

1. The ball is dropped from an initial height k. Working... 3¢ Show work v

2. When the ball hits the ground, it bounces back up with a fraction 7 of its previous height due
to the effects of friction. That is, after the first bounce, it reaches a height of 7 X hy, after

the second bounce, it reaches a height of 7 X 7 X hg, and so on. YOU can download the CSV ﬁle here

3. The height of the ball as a function of time during each bounce will follow a parabolic

trajectory due to gravitational acceleration.
Given these assumptions:

* The maximum height after the 3-th bounce will be h; = 7* X hy.
* The time it takes for the ball to hit the ground after being dropped from height hist =

%h, where g is the gravitational acceleration (approximated as 9.81 m/sz).

* The time it takes for the ball to complete an up-and-down bounce cycle after the ¢-th

bounce is 2t;, where t; is the time it takes for the ball to hit the ground from height h;.
For simplicity, let's assume:

* hy = 10 m (initial height from which the ball is dropped)

* r = 0.8 (restitution coefficient, accounting for energy loss due to friction)



Advanced data analysis

@ bouncing_ball.csv

Analyze what is going on with the data in this csv file

Alright, let's start by loading the data from the CSV file and taking a preliminary look at its

contents.

Finished working Show work v

The CSV file contains two columns: "Time" and "Height". It appears to represent the height of

an object (possibly a ball) over time.

Let’s rename the file to physicsexample.csv
and rename the columnstototandh



Advanced data analysis
@ physicsexample.csv

Analyze this data
Let's start by loading and inspecting the contents of the provided CSV file.
Finished working Show work v
The data consists of two columns:

1. - which seems to represent time.

2. y - which seems to represent some kind of position or measurement with respect to time.

Given the context, it's possible that this data represents the motion of an object over time,

perhaps its vertical position as it undergoes free fall or some other type of motion.

To better understand the nature of this data, we can plot it and look for any discernible

patterns. Would you like to proceed with this visualization?



Advanced data analysis

The plot shows a downward concave curve, which suggests that the object is undergoing
Finished working Showwork v . . . . 5 q
accelerated motion, possibly due to gravity. The object starts from a certain height (as
Plot of y vs. t indicated by the initial y value) and its height decreases over time, implying a downward
10} — motion.

This behavior is consistent with the motion of an object in free fall under the influence of

8r gravity, starting from rest. The mathematical model for such motion can be represented as:
1,
s 6l y(t) =90 — 9t
5
'§ Where:
a
4 -

* Yo is the initial height.

° gisthe acceleration due to gravity (approximately 9.81 m/s2 near the Earth's surface).

If this is indeed the case, we can fit the data to this model to estimate the values of yy and g.

0 2 7 6 8 10 12 Would you like to proceed with this fitting?
Time (t) Y P g MA yeS

Finished working Show work Vv

The fitted model suggests the following:

1. The initial height yg is approximately 6.23 units (possibly meters).

2. The estimated acceleration g is approximately 0.0643 units/s2.
and so on...

This value for g is much smaller than the typical acceleration due to gravity near the Earth's
surface (which is around 9.81 m/sZ). This could imply that the data doesn't represent free fall
due to gravity on Earth, or perhaps it's a scaled representation, or there might be other

forces at play.

To visualize how well our model fits the data, | can plot both the original data and the fitted

curve on the same graph. Would you like to see this visualization?



Additional observations on GPT4

08 Harvard Business School Technology & Operations Mgt. Unit Working Paper No. 24-013

Hl GPT + Overview
I GPT Only
07 mmm Control

06

e Consultants using Al produced 40% higher
quality results than those without.

Quality

* GPT-4 is creative
% exceeds 99% of people on the Torrance Tests of Creative Thinking.

Nobody knows what these models are capable of

GPT4 is the worst generative model you will ever use


https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4573321
https://neurosciencenews.com/ai-creativity-23585/

2. Atrophy

Will large language models make
us stupid?




Landmarks in education

orinting large Iac?glauge
x writing press the models
\ internet %
% x * The Al
F Singularity?
50,000 5,000 500 50 5 log time
years af p Years ago years ago \\ars ago years ago

And it is not true wisdom that you offer your disciples,
but only the semblance of wisdom, for by telling them
of many things without teaching them you will make
them seem to know much while for the most part they
know nothing.

Johannes Trithemius (1492)

"The printed book is made of paper and, like paper,
will quickly disappear. But the scribe working with
parchment ensures lasting remembrance for himself
and for his text"



Landmarks in education

printing
x writing press

A

large langauge

the models

internet %

The Al
x * Singularity?

o
»

50,000/ A 5,000 500

years years ago years ago

If men learn [from writing], it will implant forgetfulness in
their souls. They will cease to exercise memory because
they rely on that which is written.

And it is no true wisdom that you offer your disciples, but
only the semblance of wisdom, for by telling them of
many things without teaching them you will make them
seem to know much while for the most part they know
nothing.

50 5 log time
ars ago years ago

Johannes Trithemius (1492)

"The printed book is made of paper and, like paper,
will quickly disappear. But the scribe working with
parchment ensures lasting remembrance for himself
and for his text"



Will large language models destroy education? m

LLMs can be infinitely patient, super-knowledgable ~ * Cannot base grades on correctness

teaching assistants of homework problems anymore

Education adapted to invididual learning styles
* Classroom teaching is inefficient

Private tutors for all

 Complete democratization of education
short-term fix long-term fix

In-class exams machine does
assessment

* Must confront misalignment between
assessment and learning goals

Potential to improve education is huge!

e What is the future role of the instructor?
e What is the future role of institutions?



3. Scalability

Exponential laws
must fail




Exponential growth finds a way

Moore’s law: computation power/time

Moore’s Law: The number of transistors on microchips doubles every two
Mo iical regularity that the n imats
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How can machines continue to grow?

Machine learning
high school
* 19% of high school graduates in the US cannot read 2021 l

early college
e solve standard problems using standard formulas 2023
* |earn computational tools

[
[
[
[
[
vi
late college I
* master abstract concepts 20257 [
* solve difficult but previously solved problems {

graduate school

* tackle difficult unsolved problems
* invent or adapt appropriate tools
* create and solve toy problems to build intuition 20277
e simplify enough until solvable

e arrive at the boundries of human understanding

4_—_—_—_—_—_—_—_—

professor

* write grants, teach, advise students, give public lectures 20297
* find solvable problems -- not too easy, not to hard

* nudge the boundries of human understanding



How can machines continue to grow?

Current state-of-the art can solve textbook physics problems
* Trained on solved problems from books, physics.stackexchange, chegg etc.

* We have nearly saturated the training data. Where will new data come from?

Where did the old data come from?
* Textbook problems are written by human beings
* physics.stackexchange solutions are written by human beings

Alpha Zero: learns to solve chess problems by generating its own training data

GPT4:
* can generate and solve problems

* user (human) feedback helps refine model
* it can refine its own model!

However, negative energy doesn't make sense in this context, which means we made a

mistake in our calculations. Let's go back and check the steps.




4. Interpretabillity

”OFC yogan Markus Graf, March 2023

Should artificial intelligence be interpretable to humans?

MDS, Nature reviews physics (2022)



Humans are limited by biology

project A
to 2D

v

Why do we do this? Because we have eyes
« 2D is not special to a machine.
« Machines can “visualize” in d dimensions

10 ® 0
Saudy Tors (Perud Aes)

Eyes have nothing to do

with particle physics!

* Humans can only hold 5-9 concepts in working memory at once

* We like simple-looking equations

i) = Hy 1@ =myp G, =rT,

« Computer memory can handle much more than 5-9 concepts
« They can understand systems not governed by simple equations



In the past, we have made progress  |n recent particle physics, it’'s hard to tell if
depsite many dead ends dead ends have deflected us off course

g S %

At this rate, a complete theory of everything may take a very long time
« Maybe real progress will take 100 years, or maybe 10,000 years

Maybe the problems are just too hard (for us)

Could a cat ever learn to play chess?
If humans are not qualitatively different from cats, we have limits too




Benefits of machine understanding

Suppose a machine understands the theory of everything
e e.g. can calculate the fine-structure constant from scratch

e e.g.can preduct the endpoint of black-hole evaporation

ShE g popular science books

O ! e They give us a feeling for how things work
. - \“\"‘N‘;{ *  We are happy that the authors
{A BRIEF DS\ 4 THEASTOUNOING % understand the details, even if we don’t

INTERCONNECTEDNESS -

HISTORY OF THE UNIVERSE
OF TIME B/"ANGREENE LISA RANDALL

| don’t understand the proof of Fermat’s last theorem

e But I’'m glad that somebody does
* Does it matter to me that the person is human? Not really.

If a machine understands fundamental physics it can
1. Dumb it down so we can get the general idea

2. Find practical applications

Is this what we want? No.

But maybe it’s the best we will get.




5. The end iIs near

Jonty Hampson, Sep 2023



What could go wrong?

s “Paperclip Maximizer” Nick Bostrom, 2014
e Suppose a machine was designed to maximize paperclip production.
e To truly minimize its loss function, it would destroy everything on earth to produce paperclips

[

** What if machines can write their own code and improve themselves? \

" * The Al Not that far off
e R | i Singularity
Q * Machines can already write and debug code
GE’ 1012 AN * Machines can already evaluate their own flaws
© GPT3.7’°' y
© K
e 9 GPT2 /[’

10 BERT
7E|m6 ‘ , , o 7
-10 -5 0 S 10



Maybe it won't be so bad

Jascha Sohl-Dickstein [Google Deepmind https://sohldickstein.com/]
*  “We are a hot mess of inconsistent, self-undermining, irrational behavior, with
objectives that change over time”

Increased intelligence is associated with
decreased coherence in biological creatures

Increased intelligence is associated with
decreased coherence across categories

25 A X
single ant correlation = -0.95 correlation = -0.65
*
- » 3 seahorse R

g 20 4 / sloth g
o i anonymous person 2 S

Coherence : S % 401
= & 15 - Tl orangutan ‘g;a,
o oak tree ©

% * orca 3 g
focus on & I s
3 * S

1 ] £ * * o 20

asingle goal  § octopus | 5%
*
8 AT E
5 10 * Human
anonymous person 3 * *  Human organization
M 10 15 20 25 0 10 20 30 40 50 60

Intelligence (average rank order) Intelligence (average rank order)

* Intelligence is anti-correlated with coherence
* More profoundly, intelligence requires incoherence

« Are intelligent machines dangerous? Maybe
« Are intelligent animals dangerous? Definitely

We are not intelligent enough to predict what

higher intelligence will do




Conclusions

Marko Lindell , March 2023

“Trump and Putin in a Jail Cell”



The future is here!

* Machine learning is having a huge imact on particle physics
* Collider physics, detector simulation, anomaly detection, lattice QCD,
* Many untouched future directions: model building, experiment design, etc.

* Large Language models are revolutionary!
* Education will never be the same
* Private tutors for everyone
* Research will never be the same
* Information is organized and analyzed critically and efficiently

* Problems in particle physics are difficult and progress has been slow
 Machine learning has the potential to make rapid progress in our lifetimes

What will education look like in 10 years?
What will research look like in 10 years?
What will be our relationship with artificial intelligence in the future?



