Black Hole Quantum Matter

Karl Landsteiner

Based on work t.a.h.s.

DKPI Final Event, Vienna, 28.09.2023

Outline

- What is a quantum anomaly?
 - Experimental demonstration !!
- Topological quantum matter = Chern Simons on Black holes
 - → Quantum Hall physics
 - → CME
 - → CVE
 - → Superfluids

Quantum Anomalies

Popular views at times somewhat inaccurate...

Anomalies

Ingredients to an anomaly:

Classical symmetry broken by quantization

→ Topology

Anomalies

20 October 1975

Can one see this anomaly in experiment?

Volume 54A, number 6

PHYSICS LETTERS

VERIFICATION OF COHERENT SPINOR ROTATION OF FERMIONS *

H. RAUCH, A. ZEILINGER, G. BADUREK, A. WILFING Atominstitut der Oesterreichischen Hochschulen, A-1020 Wien, Austria

W. BAUSPIESS Institut für Physik, Universität, D-46 Dortmund 50, Germany and Institut Laue-Langevin, F-38042 Grenoble, France

U. BONSE Institut für Physik, Universität, D-46 Dortmund 50, Germany

20 October 1975

Fig. 2. Observed intensity oscillations of the 0- and H-beam as a function of the difference of the magnetic field action on beam I and II ($\Delta fBds = fB_z ds$ (path I) - $fB_z ds$ (path II).

The oscillation period clearly shows that the identical wave function is reproduced after a spinor rotation of 4π and a -1 occurs for a 2π rotation.

...

Quantum Anomalous Hall Effect

Cond-mat/Hep dictionary:

Quantum field point of view:

Matter = μ and T

Anomalies

Chiral Fermions have anomalies

→ "Gauge" anomaly
$$\mathcal{A} = c \int d^2 x \, \lambda \, F$$

→Non-local in 2D
$$c \int d^2x \, d^2y \frac{\partial A(x) F_{\mu\nu}(y) \epsilon^{\mu\nu}}{\Box_{xy}} \quad \delta A_{\mu} = \partial_{\mu} \lambda$$

→Local term in 3D $S_{CS} =$

$$S_{\rm CS} = c \int_{\rm M} A \wedge F$$

→Gauge Trafo:

$$\delta S_{\rm CS} = c \int_{\partial M} \lambda F$$

(Anomaly Inflow) [Callan, Harvey] 1985

Quantum field point of view:

(Edge) Anomaly

1 left handed + 1 right handed

$$\frac{dn_{R,L}}{dt} = \pm \frac{1}{2\pi}E \qquad \frac{d}{dt}(n_R + n_L) = 0$$

nature materials

Article

Direct visualization of electronic transport in a quantum anomalous Hall insulator

Received: 4 May 2022

Accepted: 26 June 2023

Published online: 3 August 2023

Check for updates

G. M. Ferguson 0^1 , Run Xiao², Anthony R. Richardella², David Low¹, Nitin Samarth 0^2 & Katja C. Nowack $0^{1,3}$

A quantum anomalous Hall (QAH) insulator is characterized by quantized Hall and vanishing longitudinal resistances at zero magnetic field that are protected against local perturbations and independent of sample details. This insensitivity makes the microscopic details of the local current distribution inaccessible to global transport measurements. Accordingly, the current distributions that give rise to transport quantization are unknown. Here we use magnetic imaging to directly visualize the transport current in the QAH regime. As we tune through the QAH plateau by electrostatic gating, we clearly identify a regime in which the sample transports current primarily in the bulk rather than along the edges. Furthermore, we image the local response of equilibrium magnetization to electrostatic gating. Combined, these measurements suggest that the current flows through incompressible regions whose spatial structure

current flows through incompressible regions whose spatial structure can change throughout the QAH regime. Identification of the appropriate microscopic picture of electronic transport in QAH insulators and other topologically non-trivial states of matter is a crucial step towards realizing their potential in next-generation quantum devices.

Chern Simons and Black Holes

- → Bulk insulator is described by effective Chern-Simons action
- → Gauge invariance restored by chiral anomaly from edge modes
- → Claim: edge modes are described by Chern-Simons on Black hole

$$S_{\text{eff}} = c \int_M A \wedge F - c \int_{BH} A \wedge F$$

 $\partial M = \partial (BH)$

3 dimensions:

$$S_{\rm eff} = \int_{BH} A \wedge F$$

$$\delta S = 2 \int_{BH} \delta A \wedge F + \left(\delta A \wedge A \right) |_{\partial BH}$$

 $F = \partial_r A_t dr \wedge dt$

 $\mu = A_t(b) - A_t(r_h)$ Encodes chemical potential μ

 $\delta S = \delta A.J$

$$\int J = 2\mu - A_t(b)$$

Current of 2D Chiral FermionI (covariant vs consistent anomaly) [Bardeen, Zumino] 1984

0

Gravitational CS term:

$$S = \int_{BH} (\Gamma d\Gamma + \frac{2}{3}\Gamma^{3})$$

$$x^{\mu} \to x^{\mu} + \xi^{\mu}$$

$$\delta\Gamma = (i_{\xi}d + di_{\xi})\Gamma - D\Lambda_{\xi}$$

$$(\Lambda_{\xi})^{\alpha}_{\beta} = \frac{\partial\xi^{\alpha}}{\partial x^{\beta}} \qquad D \cdot = d \cdot + [\Gamma, \cdot]$$

 $\delta S = \int \Lambda_{\xi} R$ 2D Gravitational anomaly on boundary

Important detail: vanishing extrinsic curvature on boundary!

Calculate current as before:

$$ds^{2} = dr^{2} - f(r)^{2}(dt - \delta A_{g}dx)^{2} + g(r)^{2}dx^{2})$$

"Gravito-electric" potential (Source for energy current)

$$\delta S = 2A_g \int_{r_H}^{b} \left[\frac{ff'g'}{g} - (f')^2\right]' dr$$

$$T^{tx} = J_E = 8\pi^2 T^2$$

Energy current of chiral fermion

Application: thermal QHE

Application: CME

4D anomalies and 5D Chern-Simons forms:

• Chiral Magnetic Effect:

$$S_{\text{eff}} = C \int_{\mathcal{BH}} A \wedge F_V \wedge F_V$$

$$\vec{J} = 2C(\mu_5 - A_t)\vec{B}$$

• Chiral Separation Effect:

$$S_{\text{eff}} = C \int_{\mathcal{BH}} A \wedge F_V \wedge F_V$$

$$\vec{J}_5 = 2C\mu\vec{B}$$

• Chiral Vortical Effect:

$$S_{\text{eff}} = C_g \int_{\mathcal{BH}} A \wedge \operatorname{tr}(R \wedge R)$$

$$\vec{J} = 16\pi^2 C_g T^2 \vec{\Omega}$$

→ Superfluidity as BF theory:
$$S_{\text{eff}} = \int_{\mathcal{BH}} B_3 \wedge F$$

"anomaly" in higher form symmetry = vortex creation [Delacretaz, Hofman, Mathys] 2019

$$\omega^2 - v_s k^2 = 0$$

Quantum Anomalies

The good news: you can survive them

Summary

[Fan Zhang]

Thank you!