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The context

Because the Euler-Lagrange derivatives of a total divergence
∂µV µ(φA,∂νφA, · · · ) are zero,

δ(∂µV µ)

δφA
≡ ∂(∂µV µ)

∂φA
−∂ν

∂(∂µV µ)

∂(∂νφA)
+·· · = 0 (1.1)

it is sometimes stated that surface terms can be freely dropped in
the action.

This would be correct if the action principle was just a
book-keeping device for the equations of motion,

but the action is much more than that.

Its value has physical significance, and since surface terms might
be non-zero, care must be exercised when dealing with them.
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The context

The relevance of surface terms has been much discussed in the
case of gravity

but it is of general validity.

It will be illustrated here through examples,

one general, and two taken from gravity.

I will work with the Hamiltonian form of the action´
dt(piq̇i −H)+ surface terms.

(In the case of field theory, piq̇i = ´ ddxπAφ̇
A and H = ´ ddxH .)
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piq̇i or −ṗi qi ?

The kinetic term in the Hamiltonian action is often written as
piq̇i.

But why not −ṗi qi, which differs from it by the total time
derivative − d

dt (piqi) ?

The answer is that both are relevant, but for different situations.

This is important quantum-mechanically, but can already be
understood classically.
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But why not −ṗi qi, which differs from it by the total time
derivative − d

dt (piqi) ?

The answer is that both are relevant, but for different situations.

This is important quantum-mechanically, but can already be
understood classically.

4 / 16



The relevance of
surface terms in

the action
principle

Marc Henneaux

Introduction

Coordinate versus
momentum
representation

Energy in gravity

BMS algebra

Black hole
entropy

Conclusions

piq̇i or −ṗi qi ?

The action S = ´ t2
t1

dt(piq̇i −H) is an extremum on the classical
history (fulfilling the Hamiltonian equations of motion) only if
one fixes the qi’s at the time boundaries.

Indeed one has

δS =
ˆ t2

t1

dt

(
δpi(q̇i − ∂H

∂pi
)+δqi(−ṗi − ∂H

∂qi
)

)
+

[
piδqi

]t2

t1

and this is an extremum “on-shell” (δS = 0) only if δqi = 0.

If one were to fix the pi’s at the time boudaries (δpi = 0), the
action would not be an extremum unless pi(t1) = pi(t2) = 0, which
eliminates most initial conditions !
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piq̇i or −ṗi qi ?

However, the action S′ = ´ t2
t1

dt(−ṗiqi −H), which differs from S by
a boundary term, is an extremum on the classical history if one
fixes the pi’s at the time boundaries

and is thus the appropriate action for that problem.

Indeed one has

δS′ =
ˆ t2

t1

dt

(
δpi(q̇i − ∂H

∂pi
)+δqi(−ṗi − ∂H

∂qi
)

)
−

[
δpi qi

]t2

t1

and this is an extremum “on-shell” (δS′ = 0).

The boundary term
[
pi qi

]t2
t1

by which S and S′ differ is in general
non-zero and makes the difference.
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piq̇i or −ṗi qi ?

In the quantum theory, the path integral

ˆ
Dq(t)Dp(t)e

i
ħ S[q(t),p(t)]

gives the transition amplitude < q2, t2|q1, t1 > in the coordinate
representation

while the path integral
´

Dq(t)Dp(t)e
i
ħ S′[q(t),p(t)]

gives the transition amplitude < p2, t2|p1, t1 > in the momentum
representation.

One goes from one to the other by Fourier transform, which is

exactly what the surface term e−
i
ħ
(
(pi qi)(t2)

)
e

i
ħ
(
(pi qi)(t1)

)
is needed

for.
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gives the transition amplitude < q2, t2|q1, t1 > in the coordinate
representation

while the path integral
´

Dq(t)Dp(t)e
i
ħ S′[q(t),p(t)]

gives the transition amplitude < p2, t2|p1, t1 > in the momentum
representation.

One goes from one to the other by Fourier transform, which is

exactly what the surface term e−
i
ħ
(
(pi qi)(t2)

)
e

i
ħ
(
(pi qi)(t1)

)
is needed

for.
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Surface terms at spatial infinity in field theory

In field theory, surface terms at the time boundaries have the
same interpretation and role than in mechanics. They are related
to the chosen representation.

Surface terms at the space boundaries are equally crucial.

This is particularly striking in the case of gravity.

We start with the energy.

We recall that in classical mechanics, the action
S[q(t)] = ´ t2

t1
dt(piq̇i −H) is equal to S =−E(t2 − t1) for a

time-independent solution to the equations of motion
(q̇i = 0 = ṗi ; we assume the Hamiltonian to be
time-independent).
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(q̇i = 0 = ṗi ; we assume the Hamiltonian to be
time-independent).

8 / 16



The relevance of
surface terms in

the action
principle

Marc Henneaux

Introduction

Coordinate versus
momentum
representation

Energy in gravity

BMS algebra

Black hole
entropy

Conclusions

Surface terms at spatial infinity in field theory

In field theory, surface terms at the time boundaries have the
same interpretation and role than in mechanics. They are related
to the chosen representation.

Surface terms at the space boundaries are equally crucial.

This is particularly striking in the case of gravity.

We start with the energy.

We recall that in classical mechanics, the action
S[q(t)] = ´ t2

t1
dt(piq̇i −H) is equal to S =−E(t2 − t1) for a

time-independent solution to the equations of motion
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Surface terms at spatial infinity in field theory

One would thus expect that for a Schwarschild black hole of mass
M , the gravitational action would reduce to −M(t2 − t1).

However, the “naive” gravitational action

S[gij(t,xk),πij(t,xk),N(t,xk),N i(t,xk)]

=
ˆ

dt

ˆ
d3x

(
πijġij −NH −NkHk

)

reduces to zero (ġij = 0, H = 0 =Hk).

The problem is that we are using an action which is incorrect
because it misses important surface terms at the space
boundaries.
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Surface terms at spatial infinity in field theory

Asymptotically flat geometries

The gravitational field configurations over which one extremizes
the action are characterized by the asymptotic behaviour

gij = δij +O (
1

r
), πij =O (

1

r2 ),

and N → 1, Nk → 0 (asymptotic time translations).

The O ( 1
r )-term in gij is varied in the action.

In the Schwarzschild metric, this term involves the mass M ,
which is thus varied.
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Surface terms at spatial infinity in field theory

Computation of δS

One finds that when the equations of motion hold, the variation
of the action is given by a non-vanishing surface integral at
spatial infinity,

δS = δEADM (t2 − t1) 6= 0

i.e., is not an extremum on-shell.

Here, EADM = 1
16π

¸
S∞ d2Sk(gik,i −gii,k) is the so-called “ADM

energy”.

It is equal to the mass M when evaluated on the Schwarzshild
solution (for which the linear momentum Pk vanishes).
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Surface terms at spatial infinity in field theory

In order to cure this problem, one must substract from the
gravitational action the term

´
dtEADM ,

S =
ˆ t2

t1

dt
[ˆ

d3x
(
πijġij −NH −NkHk

)
− 1

16π

˛
S∞

d2Sk(gik,i−gii,k)
]

so that δS = 0 under the given boundary conditions.

The on-shell value of S is then −M(t2 − t1), as it should be.

Everything is in the surface term !

Note that the proper time at infinity between the initial and final
slices is given by t2 − t1 since N → 1 and is fixed in the variational
principle.

If one were to fix M and leave t2 − t1 free, the original action
would be ok.
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dt
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d3x
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πijġij −NH −NkHk
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16π

˛
S∞
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]
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More general asymptotic transformations

One can consider more general symmetry transformations than
just the time translations.

The full symmetry group is infinite-dimensional and contains the
homogeneous Lorentz transformations, the spacetime
translations as well as angle-dependent “supertransltions”.

It is called the B(ondi)-M(etzner)-S(achs) group.

All the corresponding charge-generators are given by surface
integrals at infinity.
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Going Euclidean

We now consider the black hole entropy.

To deal with black hole thermodynamics, we “go Euclidean”.

The Euclidean Schwarzschild black hole is given by

ds2 =
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2

and is regular at r = 2M (origin) only if the coordinate t is
periodic of period 8πM .

This fixes the black hole temperature to be 1
8πM .
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Free energy

Since the temperature is fixed, the relevant statistical ensemble is
the canonical ensemble.

The free energy is given by e−βF = ´ Dge−βSE

where SE is the Euclidean action (integration over the momenta
has been performed).

The action is dominated by the classical solution, i.e., the
(Euclidean) Schwarzschild solution, if indeed
δSE (Schwarzschild) = 0

(and not just δSE = surface term).

This forces one to add a surface term to the Einstein-Hilbert
action

´
d4xR

p
g, which can be expressed in terms of the

extrinsic curvature of the boundary (Gibbons-Hawking).

This surface term provides the entire contribution to the entropy
since R = 0 for Schwarzschild.

(Can be also formulated in the Hamiltonian description.)
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Conclusions

Surface terms in the action are most relevant.

As the pq̇ example shows, their explicit form depends on the
boundary conditions.

Different choices of boundary conditions might correspond to
different representations of the same theory, or even define
different theories.

It is thus difficult to disentangle the discussion of the surface
terms from the discussion of the boundary conditions.

In the case of gravity, surface terms are everything (energy,
entropy).

THANK YOU !
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