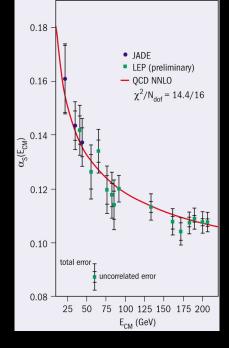
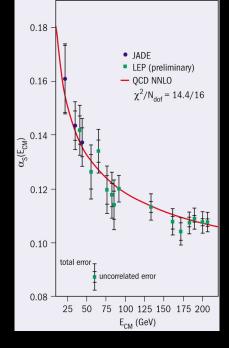


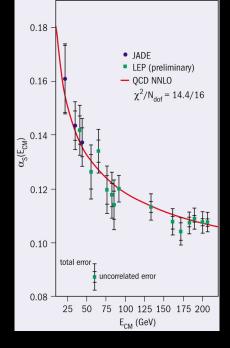
Paul Romatschke, CU Boulder





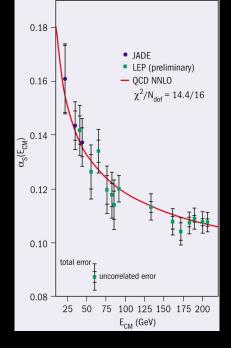
QCD coupling decreases as function of energy

CERN Courier, November 2004



- QCD coupling decreases as function of energy
- Negative β-function:

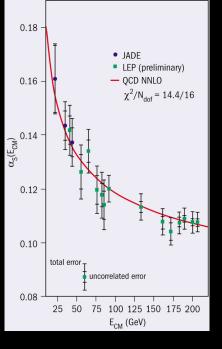
$$\beta \equiv \frac{\partial \alpha_s(\bar{\mu})}{\partial \ln \bar{\mu}^2} < 0.$$



- QCD coupling decreases as function of energy
- Negative β-function:

$$\beta \equiv \frac{\partial \alpha_s(\bar{\mu})}{\partial \ln \bar{\mu}^2} < 0 \,. \label{eq:beta}$$

Implies *asymptotic freedom*:



- QCD coupling decreases as function of energy
- Negative β-function:

$$\beta \equiv \frac{\partial \alpha_s(\bar{\mu})}{\partial \ln \bar{\mu}^2} < 0 \,.$$

Implies asymptotic freedom: quarks and gluons do not interact for asymptotically high energy $\bar{\mu} \to \infty$

Price of Asymptotic Freedom

Sidney Coleman and David J. Gross Phys. Rev. Lett. **31**, 851 – Published 24 September 1973

A renormalizable field theory is said to be asymptotically free if the origin of coupling-constant space is an ultraviolet-stable fixed point in the sense of Wilson. Asymptotically free theories are of great interest because they have almost-canonical light-cone singularities, and thus predict phenomena very close to Bjorken scaling. All known examples of asymptotically free theories involve non-Abelian gauge fields. We show that this is not coincidence: No renormalizable field theory without non-Abelian gauge fields can be asymptotically free.

Seemingly unrelated: Quantum Triviality

Quantum triviality

Article Talk

From Wikipedia, the free encyclopedia

In a quantum field theory, charge screening can restrict the value of the observable "renormalized" charge of a classical theory. If the only resulting value of the renormalized charge is zero, the theory is said to be "trivial" or noninteracting. Thus, surprisingly, a classical theory that appears to describe interacting particles can, when realized as a quantum field theory, become a "trivial" theory of noninteracting free particles. This phenomenon is referred to as **quantum triviality**. Strong evidence supports the idea that a field theory involving only a scalar Higgs boson is trivial in four spacetime dimensions,^{(1)[2]} but the situation for realistic models including other particles in addition to the Higgs boson is not known in general. Nevertheless, because the Higgs boson plays a central role in the Standard Model of particle physics, the question of triviality in Higgs models is of great importance. Quantum Triviality: $\lambda_R(m) = 0$ in the continuum limit

2019: Proofs of Quantum Triviality in 4d

Michael Aizenman

Hugo Duminil-Copin

There is a loophole in the proofs of asymptotic freedom and quantum triviality There is a loophole in the proofs of asymptotic freedom and quantum triviality

It is the same loophole in both proofs

(2) If we assume the theory contains only spinless mesons, it is easy to show it cannot be asymptotically free.¹¹ Let us assume the quartic form $\lambda_{ijk} q, q, \varphi q, q$ is positive, where the λ 's are the renormalized coupling constants, and the sum on repeated indices is implied. In particular, this implies that λ_{1111} is positive. However, it is easy to compute that

$$M d\lambda_{1111}/dM \propto \lambda_{11rs} \lambda_{11rs} \ge 0.$$
(4)

Thus the theory cannot be asymptotically free. If we assume the quartic form goes to zero (asymptotic freedom) as *M* increases, but is not positive, ¹² then an application of the methods of Coleman and Weinberg¹³ shows directly that the energy of the system cannot be bounded below, and the theory is nonsense.

Coleman, Gross, 1973

with a Hamiltonian $H(\phi)$ and an a-priori measure $\rho(d\phi)$ of the form

$$H(\phi) = -\sum_{\{x,y\}\in\Lambda_R} J_{x,y} \phi_x \phi_y$$
, $\rho(d\phi_x) = e^{-\lambda \phi_x^4 + b\phi_x^2} d\phi_x$, (1.12)

Definition 2.1 A probability measure on $\rho(d\varphi)$ on \mathbb{R} is said to belong to the Griffiths-Simon (GS) class if either of the following conditions is satisfied

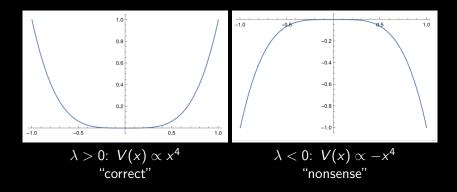
 ρ can be presented as a (weak) limit of probability measures of the above type, and is of sub-gaussian growth:

$$e^{|\varphi|^{\alpha}}\rho(d\varphi) < \infty$$
 for some $\alpha > 2$. (2.2)

Aizenman, Duminil-Copin, 2019

Both proofs assume $\lambda_R(\bar{\mu} = \Lambda_{\rm UV}) > 0$

Classical Potentials



Nobel prize winners and Fields Medalists tell you that $\lambda < 0$ QFT is nonsense. Do you want continue?

Nobel prize winners and Fields Medalists tell you that $\lambda < 0$ QFT is nonsense. Do you want continue?

Can field theory with $\lambda_R(\bar{\mu} = \Lambda_{\rm UV}) < 0$ make sense?

Can field theory with $\lambda_R(\bar{\mu} = \Lambda_{\rm UV}) < 0$ make sense? Not in classical physics. But maybe for a quantum theory?

Reason I: Pure Math

Technical Slides Ahead!

Define

$$Z(\lambda) = \int_{-\infty}^{\infty} dx e^{-\lambda x^4}$$

Define

$$Z(\lambda) = \int_{-\infty}^{\infty} dx e^{-\lambda x^4}$$

$$Z(-1) = ?$$

Seemingly unrelated

Define

$$Z(\lambda) = \int_{-\infty}^{\infty} dx e^{-\lambda x^2}$$

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

$$Z(-1) = ?$$

Seemingly unrelated

$$Z(\lambda) = \int_{-\infty}^{\infty} dx e^{-\lambda x^4}$$

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

• What is
$$\zeta(-1)=?$$

$$Z(-1) = ?$$

Seemingly unrelated

Define

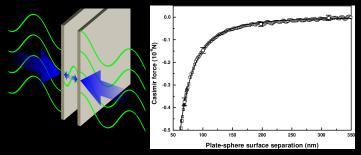
$$Z(\lambda) = \int_{-\infty}^{\infty} dx e^{-\lambda x^2}$$

$$Z(-1) = ?$$

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

- What is $\zeta(-1) = ?$
- Riemann 1859: analytic continuation

$$\zeta(-1) = -\frac{1}{12}$$



Experimental verification of analytically continued ζ -function

Define

$$Z(\lambda) = \int_{-\infty}^{\infty} dx \, e^{-\lambda x^2}$$

What is

$$Z(-1) = ?$$

• calculate for $\lambda > 0$

$$Z(\lambda) = 2\lambda^{-\frac{1}{4}}\Gamma\left(\frac{5}{4}\right)$$

Analytically continue:

$$Z(-1) = \sqrt{2}(1-i)\Gamma\left(\frac{5}{4}\right)$$

Seemingly unrelated

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

- What is $\zeta(-1) = ?$
- Riemann 1859: analytic continuation

$$\zeta(-1)=-rac{1}{12}$$

• Integral representation for $\lambda > 0$:

$$Z(\lambda) = \int_{-\infty}^{\infty} dx \, e^{-\lambda x^4}$$

• Integral representation for $\lambda > 0$:

$$Z(\lambda) = \int_{-\infty}^{\infty} dx \, e^{-\lambda x^4}$$

• Analytic continuation for $\lambda < 0$:

$$Z(\lambda=-g)=2\Gamma\left(rac{5}{4}
ight)g^{rac{1}{4}}(-1)^{rac{1}{4}}$$

• Integral representation for $\lambda > 0$:

$$Z(\lambda) = \int_{-\infty}^{\infty} dx \, e^{-\lambda x^4}$$

• Analytic continuation for $\lambda < 0$:

$$Z(\lambda = -g) = 2\Gamma\left(\frac{5}{4}\right)g^{\frac{1}{4}}(-1)^{\frac{1}{4}}$$

Not unique: different branches of root

• Integral representation for $\lambda > 0$:

$$Z(\lambda) = \int_{-\infty}^{\infty} dx \, e^{-\lambda x^4}$$

• Analytic continuation for $\lambda < 0$:

$$Z(\lambda=-g)=2\Gamma\left(rac{5}{4}
ight)g^{rac{1}{4}}(-1)^{rac{1}{4}}$$

- Not unique: different branches of root
- But clearly no more "nonsense" than $\zeta(-1)$

That was tedious. And boring. What's your point?

• Standard Quantum Mechanics: Observables obey Hermiticity:

$$\mathcal{H}^{\dagger}=\mathcal{H}$$
 .

• Standard Quantum Mechanics: Observables obey Hermiticity:

 $\mathcal{H}^{\dagger}=\mathcal{H}$.

• We know Hermiticity is sufficient for real & positive ground state

• Standard Quantum Mechanics: Observables obey Hermiticity:

$$\mathcal{H}^{\dagger}=\mathcal{H}$$
 .

- We know Hermiticity is sufficient for real & positive ground state
- But is it necessary?

Non-Hermitian Quantum Mechanics

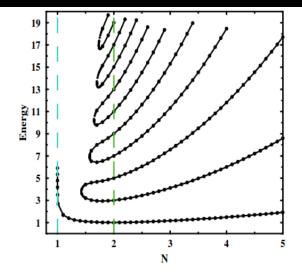


FIG. 1. Energy levels of the Hamiltonian $H = p^2 - (ix)^N$ as a function of the parameter N. There are three regions:

Bender & Böttcher, 1997

Non-Hermitian Quantum Mechanics

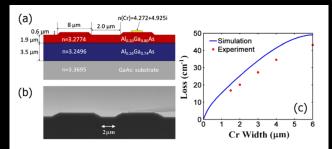


FIG. 3 (color online). Non-Hermitian dual structure. (a) Design details and complex refractive index distribution. (b) Scanning electron microscopy picture of the finalized passive \mathcal{PT} device with the Cr stripe shown on the right. (c) Modal loss of isolated waveguide structure as a function of Cr width.

[needs ref]

They are well defined as analytic continuations

- They are well defined as analytic continuations
- Analytic continuation is *unique* if additional information is present (e.g. requiring *PT*-symmetry)

- They are well defined as analytic continuations
- Analytic continuation is *unique* if additional information is present (e.g. requiring \mathcal{PT} -symmetry)
- Non-Hermitian Systems have been experimentally observed in various systems

- They are well defined as analytic continuations
- Analytic continuation is *unique* if additional information is present (e.g. requiring *PT*-symmetry)
- Non-Hermitian Systems have been experimentally observed in various systems
- Negative coupling QFT could still be "pathological" for other reasons, but $\lambda < 0$ is **not** sufficient reason to dismiss them as "nonsense"

- They are well defined as analytic continuations
- Analytic continuation is *unique* if additional information is present (e.g. requiring \mathcal{PT} -symmetry)
- Non-Hermitian Systems have been experimentally observed in various systems
- Negative coupling QFT could still be "pathological" for other reasons, but $\lambda < 0$ is **not** sufficient reason to dismiss them as "nonsense"
- Proposal: calculate observables and check!

O(N) Model

Defined as

$$Z = \int \mathcal{D}\vec{\phi}e^{-S_E}, \quad S_E = \int_x \left[\frac{1}{2}\partial_\mu\vec{\phi}\cdot\partial_\mu\vec{\phi} + \frac{\lambda}{N}\left(\vec{\phi}^2\right)^2\right],$$

with $\vec{\phi} = (\phi_1, \phi_2, \dots, \phi_N)$. Examples:

O(N) Model

Defined as

$$Z = \int \mathcal{D}\vec{\phi}e^{-S_E}, \quad S_E = \int_x \left[\frac{1}{2} \partial_\mu \vec{\phi} \cdot \partial_\mu \vec{\phi} + \frac{\lambda}{N} \left(\vec{\phi}^2 \right)^2
ight],$$

with $\vec{\phi} = (\phi_1, \phi_2, \dots, \phi_N)$. Examples:

- 0+1d is quantum mechanics in N dimensions (any N)
- 2+1d: conjectured AdS₄ gravity dual for $N \rightarrow \infty$ [hep-th/0210114]
- 3+1d: N=4 is Higgs case

• $O(N \gg 1)$ model is renormalized **non-perturbatively**

- $O(N \gg 1)$ model is renormalized **non-perturbatively**
- In the continuum limit $\Lambda_{\rm UV} o \infty$, running coupling is

$$\lambda_{R}(\mu) = rac{(2\pi)^2}{\ln rac{\Lambda^2}{\mu^2}}$$

- $O(N \gg 1)$ model is renormalized **non-perturbatively**
- In the continuum limit $\Lambda_{\rm UV} \to \infty,$ running coupling is

$$\lambda_R(\mu) = rac{(2\pi)^2}{\ln rac{\Lambda^2}{\mu^2}}$$

• Non-vanishing coupling in the continuum. Theory is non-trivial!

- $O(N \gg 1)$ model is renormalized **non-perturbatively**
- In the continuum limit $\Lambda_{\rm UV} \to \infty,$ running coupling is

$$\lambda_R(\mu) = \frac{(2\pi)^2}{\ln \frac{\Lambda_{\overline{\text{MS}}}^2}{\mu^2}}$$

- Non-vanishing coupling in the continuum. Theory is non-trivial!
- Absolute value of coupling decreases at high energy

$$\lim_{\mu\to\infty}\lambda_R(\mu)=0^-\,,$$

- $O(N \gg 1)$ model is renormalized **non-perturbatively**
- In the continuum limit $\Lambda_{\rm UV} \to \infty,$ running coupling is

$$\lambda_R(\mu) = \frac{(2\pi)^2}{\ln\frac{\Lambda_{\rm MS}^2}{\mu^2}}$$

- Non-vanishing coupling in the continuum. Theory is non-trivial!
- Absolute value of coupling decreases at high energy

$$\lim_{\mu\to\infty}\lambda_R(\mu)=0^-\,,$$

Theory is asymptotically free!

 $O(N \gg 1)$ model in 4d – Physics consequence

• Standard Model Higgs Potential (2 parameters)

$$V_{\rm Higgs} = -m^2 \phi^2 + \lambda \phi^4$$

 $O(N \gg 1)$ model in 4d – Physics consequence

Standard Model Higgs Potential (2 parameters)

$$V_{
m Higgs} = -m^2 \phi^2 + \lambda \phi^4$$

O(N) model effective potential (one parameter)

$$V_{\rm O(N)} = \lambda \phi^4$$

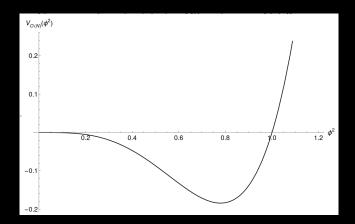
 $O(N \gg 1)$ model in 4d – Physics consequence

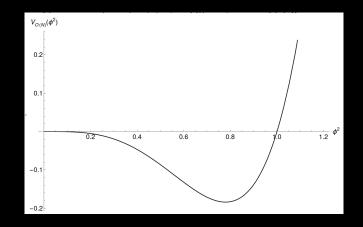
Standard Model Higgs Potential (2 parameters)

$$V_{
m Higgs} = -m^2 \phi^2 + \lambda \phi^4$$

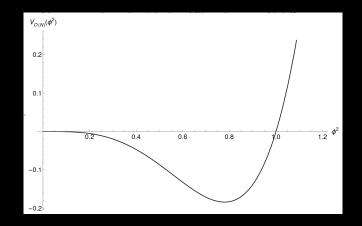
O(N) model effective potential (one parameter)

$$V_{\rm O(N)} = \lambda \phi^4 + {\rm rad.} - {\rm corr}$$





Radiative corrections generate VEV – No tachyonic mass term needed!



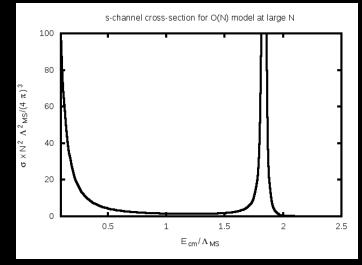
Radiative corrections generate VEV – No tachyonic mass term needed! Perturbative vacuum at $\phi = 0$ is unstable – agrees with EW Pheno

$$\mathcal{L} = -\frac{1}{2} \text{Tr } G_{\mu\nu} G^{\mu\nu} - \frac{1}{2} \text{Tr } W_{\mu\nu} W^{\mu\nu} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + (D_{\mu}\phi)^{\dagger} D^{\mu}\phi + \mu^{2}\phi^{\dagger}\phi - \frac{1}{2}\lambda \left(\phi^{\dagger}\phi\right)^{2} + \sum_{f=1}^{3} \left(\bar{\ell}_{L}^{f} i \mathcal{D} \ell_{L}^{f} + \bar{\ell}_{R}^{f} i \mathcal{D} \ell_{R}^{f} + \bar{q}_{L}^{f} i \mathcal{D} q_{L}^{f} + \bar{d}_{R}^{f} i \mathcal{D} d_{R}^{f} + \bar{u}_{R}^{f} i \mathcal{D} u_{R}^{f}\right) - \sum_{f=1}^{3} y_{\ell}^{f} \left(\bar{\ell}_{L}^{f} \phi \ell_{R}^{f} + \bar{\ell}_{R}^{f} \phi^{\dagger} \ell_{L}^{f}\right) - \sum_{f,g=1}^{3} \left(y_{d}^{fg} \bar{q}_{L}^{f} \phi d_{R}^{g} + (y_{d}^{fg})^{*} \bar{d}_{R}^{g} \phi^{\dagger} q_{L}^{f} + y_{u}^{fg} \bar{q}_{L}^{f} \phi u_{R}^{g} + (y_{u}^{fg})^{*} \bar{u}_{R}^{g} \phi^{\dagger} q_{L}^{f}\right),$$

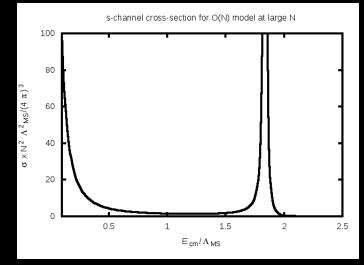
$$\mathcal{L} = -\frac{1}{2} \operatorname{Tr} G_{\mu\nu} G^{\mu\nu} - \frac{1}{2} \operatorname{Tr} W_{\mu\nu} W^{\mu\nu} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + (D_{\mu}\phi)^{\dagger} D^{\mu}\phi + \mu^{\dagger}\phi - \frac{1}{2}\lambda \left(\phi^{\dagger}\phi\right)^{2} + \sum_{f=1}^{3} \left(\bar{\ell}_{L}^{f} i \not{\mathcal{D}} \ell_{L}^{f} + \bar{\ell}_{R}^{f} i \not{\mathcal{D}} \ell_{R}^{f} + \bar{q}_{L}^{f} i \not{\mathcal{D}} q_{L}^{f} + \bar{d}_{R}^{f} i \not{\mathcal{D}} d_{R}^{f} + \bar{u}_{R}^{f} i \not{\mathcal{D}} u_{R}^{f}\right) - \sum_{f=1}^{3} y_{\ell}^{f} \left(\bar{\ell}_{L}^{f} \phi \ell_{R}^{f} + \bar{\ell}_{R}^{f} \phi^{\dagger} \ell_{L}^{f}\right) - \sum_{f,g=1}^{3} \left(y_{d}^{fg} \bar{q}_{L}^{f} \phi d_{R}^{g} + (y_{d}^{fg})^{*} \bar{d}_{R}^{g} \phi^{\dagger} q_{L}^{f} + y_{u}^{fg} \bar{q}_{L}^{f} \phi u_{R}^{g} + (y_{u}^{fg})^{*} \bar{u}_{R}^{g} \phi^{\dagger} q_{L}^{f}\right),$$

$$\mathcal{L} = -\frac{1}{2} \operatorname{Tr} G_{\mu\nu} G^{\mu\nu} - \frac{1}{2} \operatorname{Tr} W_{\mu\nu} W^{\mu\nu} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + (D_{\mu}\phi)^{\dagger} D^{\mu}\phi + \nu \psi \phi - \frac{1}{2} \lambda \left(\phi^{\dagger}\phi\right)^{2} + \sum_{f=1}^{3} \left(\bar{\ell}_{L}^{f} i \not{D} \ell_{L}^{f} + \bar{\ell}_{R}^{f} i \not{D} \ell_{R}^{f} + \bar{q}_{L}^{f} i \not{D} q_{L}^{f} + \bar{d}_{R}^{f} i \not{D} d_{R}^{f} + \bar{u}_{R}^{f} i \not{D} u_{R}^{f}\right) - \sum_{f=1}^{3} y_{\ell}^{f} \left(\bar{\ell}_{L}^{f} \phi \ell_{R}^{f} + \bar{\ell}_{R}^{f} \phi^{\dagger} \ell_{L}^{f}\right) - \sum_{f,g=1}^{3} \left(y_{d}^{fg} \bar{q}_{L}^{f} \phi d_{R}^{g} + (y_{d}^{fg})^{*} \bar{d}_{R}^{g} \phi^{\dagger} q_{L}^{f} + y_{u}^{fg} \bar{q}_{L}^{f} \phi u_{R}^{g} + (y_{u}^{fg})^{*} \bar{u}_{R}^{g} \phi^{\dagger} q_{L}^{f}\right),$$

Same physics - one parameter less!



Well behaved scattering cross-section for any CM energy; prediction for scalar bound state at $m\simeq 1.84 m_{
m Higgs}$



Well behaved scattering cross-section for any CM energy; prediction for scalar bound state at $m \simeq 1.84 m_{\rm Higgs}$ This is how you kill/verify this model!

• Senior management built a "mental roadblock" about scalars in 4d

- Senior management built a "mental roadblock" about scalars in 4d
- Proofs about asymptotic freedom and quantum triviality have the same loophole

- Senior management built a "mental roadblock" about scalars in 4d
- Proofs about asymptotic freedom and quantum triviality have the same loophole
- Analytic continuation to negative coupling exploits this loophole

- Senior management built a "mental roadblock" about scalars in 4d
- Proofs about asymptotic freedom and quantum triviality have the same loophole
- Analytic continuation to negative coupling exploits this loophole
- $\, \bullet \,$ O(N) model is explicitly solvable theory and practical testing ground

- Senior management built a "mental roadblock" about scalars in 4d
- Proofs about asymptotic freedom and quantum triviality have the same loophole
- Analytic continuation to negative coupling exploits this loophole
- O(N) model is explicitly solvable theory and practical testing ground
- More checks on observables are needed
 Potentially important consequences for EW Theory and QFT

Stop using classical "intuition"! Calculate observables and check!

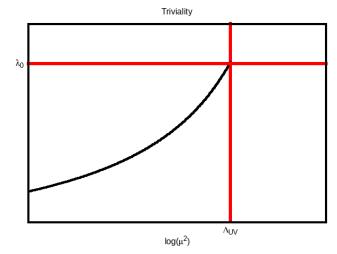
Bonus Material

References & Hyperlinks

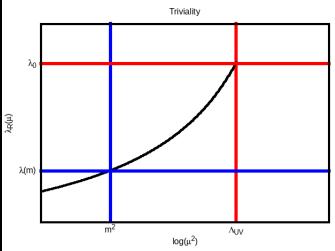
Continuum large N scalar field theory

- PR, "A solvable quantum field theory with asymptotic freedom in 3+1 dimensions", hyperlink: [2211.15683]
- PR, "Life at the Landau pole", [2212.03254]
- Grable and Weiner, "A Fully Solvable Model of Fermionic Interaction in 3+1d", [2302.08603]
- PR, "What if ϕ^4 theory in 4 dimensions is non-trivial in the continuum?", [2305.05678]
- $\mathcal{PT}\text{-symmetric}$ Quantum Mechanics and QFT relations
 - Bender and Böttcher, "Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry", [physics/9712001]
 - Ai, Bender and Sarkar, "PT-symmetric -g ϕ^4 theory", [2209.07897]
 - Lawrence, Peterson, PR and Weller, "Instantons, analytic continuation, and PT-symmetric field theory", [2303.01470]

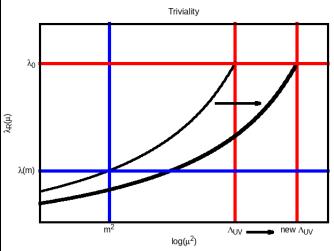
Quantum Triviality



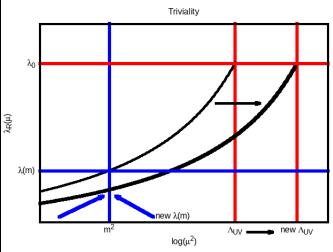
Quantum Triviality



Quantum Triviality



Quantum Triviality



Negative Coupling Field Theory History

A Field Theory with Computable Large-Momenta Behaviour.

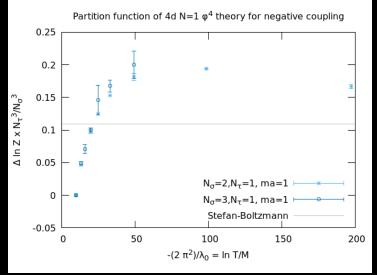
K. SYMANZIK

Deutsches Elektronen-Synchrotron DESY - Hamburg

(ricevuto il 12 Dicembre 1972)

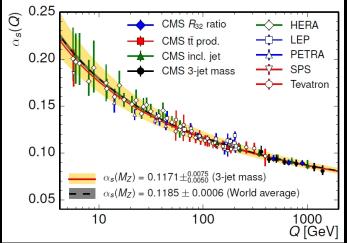
In the current extensive discussions (*) of φ^4 theory it is usually taken for granted that the renormalized coupling constant g must be positive. As emphasized previously (*) there is no known reason, axiomatic or otherwise, for g > 0 to be required for a physically acceptable theory. The feeling that otherwise the theory cannot have a vacuum and particles of discrete mass is not rigorously founded as discussed near the end of this letter. The interesting feature of the theory with g < 0, however, appears worth pointing out: If one assumes the theory to exist, the large-momenta behaviour of its Feynman amplitudes can be computed at generic momenta to arbitrary accuracy. Besides, we find that the imaginary part of the four-point vertex function in φ^4 theory should not change sign in momentum space.

Negative coupling ϕ^4 in 4d on the lattice



adapted from [2305.05678]

QCD running coupling



Somewhat misleading: really a fit of perturbation theory to experimental measurements

QCD at infinite coupling

- In pQCD, $lpha_s(ar\mu)$ does diverge at $ar\mu=\Lambda_{\overline{
 m MS}}\sim$ 0.3 GeV
- Usually dismissed as an artifact of perturbation theory
- Non-perturbative extractions (lattice+NRQCD) exist down to $\bar{\mu} = 1.5$ GeV where

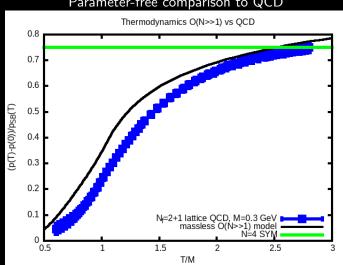
$$\alpha_s(1.5 {
m GeV}) \simeq 0.336$$

[Bazavov et al, 1407.8437]

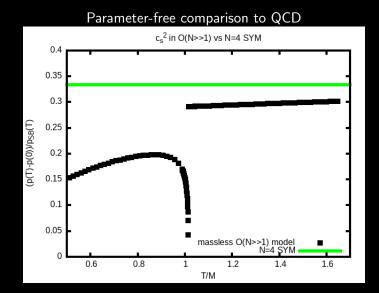
- $\,\bullet\,$ QCD could have a Landau pole at $\Lambda_{\overline{\rm MS}}\sim 0.3$ GeV
- No issues in QCD

The $O(N \gg 1)$ Model as a Model for QCD

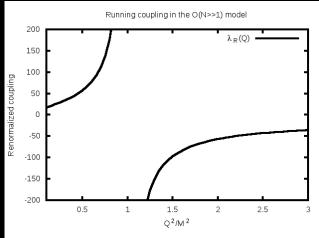
- Only one scale M
- Is *M* the same as $\Lambda_{\overline{\mathrm{MS}}}$ in QCD?
- Let's compare!



Parameter-free comparison to QCD

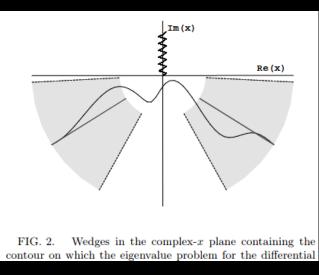


Exact Running coupling in O(N) Model



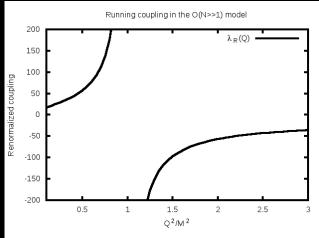
[2305.05678]

Intermezzo: Selection of Analytic Continuation



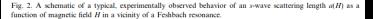
[Bender & Böttcher, 1997]

Exact Running coupling in O(N) Model



[2305.05678]

Scattering for NR fermions a a_{bs} $:H_0$ Н



[Gurarie, Radzihovsky, 2007]