

SMI – STEFAN MEYER INSTITUTE FOR SUBATOMIC PHYSICS

Studying the Strong Interaction with Kaonic Atoms at DAΦNE

Marlene Tüchler

Final Event of DK-PI

29.09.2023

Overview

\circ Introduction

- o Kaonic Atoms
- The SIDDHARTA-2 Experiment

\circ What I did during my time in the DK-PI

- On-site operations
- Characterisation and performance studies of the detector systems
- o Analysis of the first data
- Outside of the lab

 \circ What I am doing now & hope to achieve

Introduction

Marlene Tüchler, 29.09.2023 3

Motivation

- X-ray spectroscopy of light kaonic atoms
 SIDDHARTA: K⁻p
 SIDDHARTA-2: K⁻d
- Extraction of isospin-dependent (I = 0, I = 1) KN scattering lengths a_0 and a_1
- Interplay between explicit & spontaneous chiral symmetry breaking

Marlene Tüchler, 29.09.2023 4

Kaonic Atoms

 \circ K⁻ substitutes electron in hydrogen atom

$$n \sim \sqrt{\frac{\mu}{m_e}} n_e$$

(μ ... reduced mass of kaonic atom; n ... principal quantum number; m_e ... electron mass; n_e ... principal quantum number of electron)

Quantum cascade process to ground state

 Kaonic atoms are sensitive probes for low-energy QCD including strangeness:

$$r_n = \frac{\hbar^2}{\mu e^2} \frac{n^2}{Z}$$
$$E_n = -\frac{\mu c^2}{2} \left(\frac{Z\alpha}{n}\right)^2$$

(Z ... atomic number; *e* ... elementary charge; *α* ... fine structure constant)

Antikaon-Nucleon Scattering Lengths

 $\circ\,$ Strong interaction between K⁻ and nucleons: Shift ϵ_{1s} and broadened width Γ_{1s} of 1s state

 $\varepsilon_{1s} = \mathbf{E}_{1s}^{\text{measured}} - \mathbf{E}_{1s}^{\text{QED}}$

- **Improved Deser-Trueman formula** $\varepsilon_{1s} - \frac{i}{2}\Gamma_{1s} = -2\alpha^{3}\mu^{2}a_{\mathrm{K}^{-}\mathrm{p}}[1 - 2\alpha\mu(\ln\alpha - 1)a_{\mathrm{K}^{-}\mathrm{p}}]$
- \circ Isospin-dependent $\overline{K}N$ scattering lengths a_0 and a_1 :

$$a_{K^{-}p} = \frac{1}{2}(a_0 + a_1) \qquad a_{K^{-}n} = a_1$$
$$a_{K^{-}d} = \frac{k}{2}(a_{K^{-}p} + a_{K^{-}n}) + C = \frac{k}{4}(a_0 + 3a_1) + C$$

Marlene Tüchler, 29.09.2023 6

The SIDDHARTA-2 Experiment at DAΦNE

 \circ At interaction point (IP) of DA ΦNE

 o e⁺e⁻ collider complex at INFN-LNF (Frascati, Italy)

Marlene Tüchler, 29.09.2023 7

The SIDDHARTA-2 Experiment at DAΦNE

 O At interaction point (IP) of DAΦNE
 O Collider complex at INFN-LNF (Frascati, Italy)

• Kaonic deuterium is a challenge:

 \circ K_αX-ray yield for K⁻p ~ 0.012 \circ Expected K⁻d K_αX-ray yield ≤ 0.0039 \circ Γ_{1s} (K⁻d) ~ 800-1000 eV

 \rightarrow Multiple-stage veto system

What I did during my PhD studies

Characterisation of the detector systems

Analysis of first data

Outside of the lab

X-Ray Detection System

 Newly developed arrays of monolithic Silicon Drift Detectors (SDDs)

 \circ 48 arrays of 8 read-out channels \circ 2 π solid angle

- \circ Energy resolution at 6 keV:
 - ~ 155 eV (FWHM)
- o Stable energy response within 2 eV
 o Non-linearity ≤ 3.8 eV for 8 keV X-rays

The Veto-2 System

Marlene Tüchler, 29.06.2023 11

Working On-site

What I did during my PhD studies

Characterisation of the detector systems

Analysis of first data

Outside of the lab

K⁴He Measurement

Most precise measurement of kaonic ⁴He achieved with SDDs
 Integrated luminosity of 81 pb⁻¹ (≅ 65 days)

K ⁴ He L _α transition energy (eV)	6463.44 ± 0.95 _{stat} ± 2.00 _{syst}
2p shift (eV)	$0.44 \pm 0.95_{stat} \pm 2.00_{syst}$
2 <i>p</i> width (eV)	0.6 ± 10.1 _{stat}

Marlene Tüchler, 29.06.2023 14

Kaonic Atom Transitions from Solid Targets

Transition	Transition energy (eV)
$K^-C (7 \rightarrow 5)$	8882.0 ± 2.9 _{stat} ± 3.7 _{syst}
$K^-C (6 \rightarrow 5)$	5541.1 ± 2.9 _{stat} ± 2.0 _{syst}
$K^-C (6 \rightarrow 4)$	15755.6 ± 2.9 _{stat} ± 8.7 _{syst}
$K^-C (5 \rightarrow 4)$	10212.7 ± 2.9 _{stat} ± 7.4 _{syst}
K ⁻ O (7 → 6)	5990.5 ± 10.5 _{stat} ± 2.0 _{syst}
K ⁻ O (6 → 5)	9952.4 ± 10.5 _{stat} ± 7.4 _{syst}
$K^{-}N (6 \rightarrow 5)$	7648.1 ± 7.8 _{stat} ± 3.7 _{syst}
$K^{-}N (5 \rightarrow 4)$	14048.6 ± 7.8 _{stat} ± 8.7 _{syst}
$K^{-}Al (8 \rightarrow 7)$	10439.1 ± 6.7 _{stat} ± 7.4 _{syst}
$K^{-}Al (7 \rightarrow 6)$	16092.3 ± 6.7 _{stat} ± 8.7 _{syst}

Sgaramella, F., Tüchler, M. et al. Eur. Phys. J. A 59, 56 (2023)

Marlene Tüchler, 29.06.2023 15

What I did during my PhD studies

Characterisation of the detector systems

Analysis of first data

Outside of the lab

Outside of the lab

#INPC2019

NuPic

Physics European

Marlene Tüchler, 29.06.2023 17

What I am doing now

Marlene Tüchler, 29.09.2023 19

Our goal: 500 – 800 pb⁻¹
 Currently: ~200 pb⁻¹

 \circ To-do:

Optimisation of SDD energy calibration

Our goal: 500 – 800 pb⁻¹
 Currently: ~200 pb⁻¹

• **To-do:**

Optimisation of SDD energy calibration Fine-tuning of veto systems and background reduction

Data selection based on quality criteria

Our goal: 500 – 800 pb⁻¹
 Currently: ~200 pb⁻¹

\circ To-do:

Summary

Achievements

- Characterisation of SDDs and Veto-2 system
- Most precise measurement of $(3d \rightarrow 2p)$ transition in kaonic helium-4 obtained with SDDs
- First report of higher-*n* transitions in intermediate-mass kaonic atoms

Ongoing work and future goals

- Measurement of $(2p \rightarrow 1s)$ transition in K⁻d
 - Optimisation of SDD energy calibration
 - Optimisation of background reduction
 - Fitting of energy spectrum

Appendix

Atomic Cascade

• Radiative mechanisms

1) Radiative decay

Non-radiative (collisional) mechanisms

- 2) Stark mixing
- 3) External Auger effect
- 4) Coulomb de-excitation
- 5) (Elastic scattering)

Coulomb de-excitation

Time scales:

- $\circ~$ Slowing down and capture: 10^{-12} $10^{-9}~s$
- Stark mixing: 10⁻¹⁴ 10⁻¹³ s
- Auger effect & Coulomb de-excitation: 10⁻¹² - 10⁻⁹ s
- \circ Radiative de-excitation: 10^{-17} 10^{-15} s

Atomic Cascade

2) Stark Mixing

- Mixing of pure parity states |*nml*> in electric field
- \circ Same n, $\Delta l = \pm 1$, $\Delta m = 0$
- \circ For Z \leq 2: main cause of reduction of X-ray yield
- o Day-Snow-Sucher effect:
 - X-ray yield decreases with increasing target density

Koike et al. Phys. Rev. C 53(1) (1996)

Hadronic effects

$$\varepsilon_{1s} = \mathbf{E}_{1s}^{\text{measured}} - \mathbf{E}_{1s}^{\text{QED}}$$

$$L(\mathbf{E}) = \frac{1}{\pi} \frac{\frac{\Gamma}{2}}{(\mathbf{E} - \mathbf{E}_{\mu})^2 + \frac{\Gamma^2}{4}}$$

- KN interaction strongly attractive
 Repulsive shifts
 Nuclear dynamics: A (1405) recommon
- Nuclear dynamics: $\Lambda(1405)$ resonance ~27 MeV below K⁻p threshold • *I* = 0, *S* = −1 \overline{K} N bound state

 \circ Strong coupling to $\Sigma\pi$ channel

Deser-Trueman-Baumann-Thirring Formula

Formulated for pionic hydrogen

Kaonic hydrogen without isospin-breaking corrections:

$$\varepsilon_{1s} - \frac{i}{2}\Gamma_{1s} = -2\alpha^3 \mu^2 a_{\mathrm{K}^-\mathrm{p}}$$

 \odot In kaonic atoms, isospin-breaking corrections $\delta \sim m_d - m_u$ are large: Improved formula of order $O(\delta^4)$

$$\varepsilon_{1s} - \frac{i}{2}\Gamma_{1s} = -2\alpha^{3}\mu^{2}a_{\mathrm{K}^{-}\mathrm{p}}[1 - 2\alpha\mu(\ln\alpha - 1)a_{\mathrm{K}^{-}\mathrm{p}}]$$

• Kaonic deuterium: complete three-body calculations necessary

- Coupled-channels approach
- Solution of Schrödinger equation with Coulomb potential and KN interaction potential

Chiral Unitary Approach with Coupled Channels

 \circ Non-perturbative re-summation of scattering amplitude necessary \circ Starting point: chiral SU(3)_R × SU(3)_L meson-baryon chiral effective Lagrangian

Meson-baryon interaction kernel: LO: Tomozawa-Weinberg terms (a) Born terms (direct (b) and crossed (c)) NLO (d): includes low-energy constants

 \circ T-matrix formalism: **T** = **V** + **V** · **G** · **T**

$$f_{ij}(\sqrt{s}) = \frac{1}{8\pi\sqrt{s}}T_{ij}(\sqrt{s})$$

$$a_{K^-p} = f_{11}(\sqrt{s} = m_{K^-} + m_p)$$

Ikeda et al. Nucl. Phys. A. 881 pp. 98–114 (2012)

Optical Models

o Phenomenological optical potential to describe kaon-nucleus interaction

$$V^{opt}(r) = -\frac{2\pi}{\mu} \left(1 + \frac{\mu}{m}\right) \rho(r)$$

$$\bar{a}$$
 ... average complex effective $\overline{K}N$ scattering length $\rho(r)$... nucleon density distribution V_C ... Coulomb potential

$$[-\nabla^2 + 2mE_B + (2m(V_C + V^{opt}) - V_C^2)]\Psi = 0$$

 $2mV^{opt}(r) = -4\pi F_k f(0)\rho(r)$

 F_k ... kinematical factor f(0) ... forward scattering amplitude

Density-dependent optical models:

- Level shifts repulsive
- $\circ Re(V^{opt})$ attractive
- o Low-density limit: $Re(V^{opt})$ repulsive

$$2\mu V^{opt}(r) = -4\pi \left(1 + \frac{\mu}{m}\right) \left[b + B\left(\frac{\rho(r)}{\rho(0)}\right)^{\alpha}\right] \rho(r)$$

b, *B*, α : determined in fits to data

Veto-2 Performance: Efficiency

 ○ Coincidence of SDD signal (≥ 20 keV) and signal in Veto-1 detectors to select hadronic events

$$\varepsilon = \frac{\Sigma_{\rm V2}}{\Sigma_{\rm coinc}}$$

 \circ 8 Veto-2 scintillators per SDD cell

Efficiency He = $(62 \pm 1)\%$ Efficiency D = $(57 \pm 1)\%$

Veto-2 System Performance: Timing

 \circ Time resolution of < 1 ns required

 \circ Veto-2 system tool to study kaon stopping distribution \circ Optimisation of setup

Linearity of the SDDs

- Spectrum obtained with X-ray tube shining on multi-element target (Ti, Fe, Cu, Br, Sr)
- \circ Residual at Fe K_α (6.4 keV) from (Ti, Cu)-calibration of (-0.05 ± 0.78) eV

Marlene Tüchler, 29.06.2023 34

Stability of the SDD Energy Response

3189.0

20/06

24/07

Date (DD/MM)

17/07

31/07

ਓ ^{3197.0} ਓ 3196.5

O 3196.0 A 3195.5

AD 3195.0 U 3194.5 U 3194.0

¹5 3194.0 ¹√ 3193.5 ¹√ 3193.0

3192.5

3192.0

3164.5E

3164.0

20/06

27/06

04/07

10/07

27/06

04/07

10/07

24/07

Date (DD/MM)

17/07

31/07

 \circ Stability of Cu K_a calibration line over time

• Six calibration runs over period of 34 days

• Stability of SDD energy response over time within 0.55 ADC Ch ≈ 2.0 eV