

#### Giovanni Guerrieri, for the ATLAS Open Data team

03-07-2023

# The ATLAS Open Data goal



- Accessibility
  - Make the data and the tools openly available for everyone to use, without technology, region, or knowledge restrictions.
- Transferable expertise
  - Along with particle physics analysis and ATLAS learning objectives, provide skills in programming, software and machine learning.
- Usability
  - Different target audiences, with different backgrounds and skills must be able to use the data and tools for a wide range of learning objectives.

Currently, ATLAS Open Data releases are being used by several schools, universities, interested individuals, as well as in public events, masterclasses and international workshops.

The datasets are used for an educational purpose only.





# The ATLAS Open Data release



#### • Two campaigns

- <u>8 TeV</u>: Ifb<sup>-1</sup> of data
- <u>13 TeV</u>: 10fb<sup>-1</sup> of data

### • Associated challenges

- Create datasets and selections to account for different levels of complexity.
- Include calibrated and simplified information about the reconstructed high-level objects, while containing the size of the datasets.
- Adapt part of the ATLAS analysis framework to comply with our needs.
- Provide useful tools and documentation to make data usable.
- Maintaining and improving all the online resources to make sure that accessibility is always optimal.

| Tuple branch name         | C++ type               | Variable description                                                                           |
|---------------------------|------------------------|------------------------------------------------------------------------------------------------|
| runNumber                 | l int                  | number uniquely identifying ATLAS data-taking run                                              |
| eventNumber               | int                    | event number and run number combined uniquely identifies event                                 |
| channelNumber             | int                    | number uniquely identifying ATLAS simulated dataset                                            |
| mcWeight                  | float                  | weight of a simulated event                                                                    |
| XSection                  | float                  | total cross-section, including filter efficiency and higher-order correction factor            |
| SumWeights                | float                  | generated sum of weights for MC process                                                        |
| scaleFactor PILEUP        | float                  | scale-factor for pileup reweighting                                                            |
| scaleFactor ELE           | float                  | scale-factor for electron efficiency                                                           |
| scaleFactor MUON          | float                  | scale-factor for muon efficiency                                                               |
| scaleFactor PHOTON        | float                  | scale-factor for photon efficiency                                                             |
| scaleFactor TAU           | float                  | scale-factor for fau efficiency                                                                |
| scaleFactor BTAG          | float                  | scale-factor for b-tagging algorithm @70% efficiency                                           |
| scaleFactor LepTRIGGER    | float                  | scale-factor for lepton triggers                                                               |
| scaleFactor PhotonTBIGGEB | float                  | scale-factor for photon triggers                                                               |
| trigE                     | hool                   | boolean whether event passes a single-electron trigger                                         |
| trigM                     | bool                   | boolean whether event passes a single-muon trigger                                             |
| trigP                     | bool                   | bolean whether event passes a diphoton trigger                                                 |
| len n                     | int                    | number of pre-selected leptons                                                                 |
| lep_truthMatched          | vector <bool></bool>   | boolean indicating whether the lepton is matched to a simulated lepton                         |
| lep_trigMatched           | vector < bool>         | bolean indicating whether the lepton is the one triggering the event                           |
| lep pt                    | vector <float></float> | transverse momentum of the lepton                                                              |
| lep eta                   | vector <float></float> | pseudo-rapidity n of the lepton                                                                |
| lep phi                   | vector <float></float> | azimuthal angle, $\phi$ of the lenton                                                          |
| lep E                     | vector <float></float> | energy of the lepton                                                                           |
| lep z0                    | vector float>          | z-coordinate of the track associated to the lenton wrt primary vertex                          |
| lep_charge                | vector                 | charge of the lepton                                                                           |
| lep type                  | vector (int)           | number signifying the lepton type (e or $\mu$ )                                                |
| len isTightID             | vector < hool >        | boolean indicating whether lepton satisfies tight ID reconstruction criteria                   |
| lep_ntcone30              | vector (float)         | scalar sum of track $n_{\rm m}$ in a cone of $B=0.3$ around lepton used for tracking isolation |
| lep_etcone20              | vector (float)         | scalar sum of track $F_{T}$ in a cone of $R=0.2$ around lepton, used for calorimeter isolation |
| lep_trackd0pyunbiased     | vector (float)         | $d_{\rm e}$ of track associated to letton at point of closest approach (n c a )                |
| lep_tracksigd0pvunbiased  | vector <float></float> | $d_0$ significance of the track associated to lepton at the p.c.a.                             |
| met et                    | float                  | transverse energy of the missing momentum vector                                               |
| met_phi                   | float                  | azimuthal angle of the missing momentum vector                                                 |
| iet n                     | int                    | number of pre-selected jets                                                                    |
| jet pt                    | vector <float></float> | transverse momentum of the jet                                                                 |
| jet eta                   | vector <float></float> | pseudo-rapidity, n, of the jet                                                                 |
| jet phi                   | vector <float></float> | azimuthal angle, $\phi$ , of the jet                                                           |
| iet_E                     | vector <float></float> | energy of the jet                                                                              |
| jet_ivt                   | vector <float></float> | jet vertex tagger discriminant [21] of the jet                                                 |
| jet_trueflay              | vector <int></int>     | flavour of the simulated iet                                                                   |
| jet_truthMatched          | vector <bool></bool>   | boolean indicating whether the jet is matched to a simulated jet                               |
| jet_MV2c10                | vector <float></float> | output from the multivariate $b$ -tagging algorithm [22] of the jet                            |

# The ATLAS Open Data release



More data have been released for specific purposes

- MC datasets for top tagging
  - https://opendata.cern.ch/record/15013
- MC datasets for fast calo simulation which were used as a part of the <u>CaloChallenge</u>:
  - <u>https://opendata.cern.ch/record/15012</u>
- MC datasets for the Higgs Learning challenge:
  - <u>https://opendata.cern.ch/record/328</u>
  - https://opendata.cern.ch/record/331
  - <u>https://opendata.cern.ch/record/329</u>
- And datasets for the TrackML challenge:
  - <u>https://www.kaggle.com/c/trackml-particle-identification</u>

The ATLAS Open Data comes with a set of <u>Jupyter notebooks</u> that allow data analysis to be performed directly in a web browser.

List of notebooks

<u>GitHub repository</u>

- Several analysis examples targeting different users, with different expertise and interests.
- Different frameworks, to adapt to everyone's need:
  - C++
  - python
  - RDataFrame
  - uproot







#### Online requiring only internet access

#### Hybrid requiring internet access and local resources

Offline requiring only local resources\*

7

# ATLAS Open Data infrastructure - Online



Histogram analyser: instructive and intuitive look into data

#### **Example**



# ATLAS Open Data infrastructure - Online



Swan/Binder platforms: very useful for setting up a quick and individual workspace.





# ATLAS Open Data infrastructure - Hybrid

Docker containers: robust, replicable environment



No internet required (after pulling the container and the data) 🔽

- Do not need prerequisites 🗙
- No timeout time for sessions 🗸
  - Spawn time <1min 🗸
  - Software stack available 🗸
- Relies on local computational resources

# HSF Open Data meeting - 03-07-2023



Automated 🗸

Data persistence 🗸

Spawn time <1min 🗸

Data-Lake-like setup 🚥

External/shared volumes mountable 🔤

No timeout time for sessions 🗸

Software stack available 🗸

Orchestrated docker containers

Meant to help local experts, not users!

Set up a local cluster, based on a physical server or a cloud resource







How to plug in

a USB key

Wrong

Wrong

Right

# ATLAS Open Data infrastructure - Offline

Virtual Machines

Download it and use it or put it in a USB key and take it where you want.

- Plug 'n play 🔽
- Data persistence 🗸
- Do not need prerequisites 🗙
- Works even during a nuclear fallout 😤
  - No timeout time for sessions 🗸
    - Spawn time <1min 🗸
    - Software stack available 😐

# Where do I find all of this?





## What's next?



- Improving what is there
  - Add more notebooks.
  - Enrich the documentation.
  - Maintain current infrastructure and add new resources.
- More data, less space!
  - Increase the amount of available data with a new release.
  - Provide agile and flexible formats for datasets (not only ROOT, not anymore)
  - Improved selection of physics objects (i.e. more analysis possibilities)





# Thanks!