FCC ACCELERATORS & INFRASTRUCTURES TECHNICAL DESIGN

FCC

JP. Burnet, T. Raubenheimer, K. Hanke

FCC Week 2024

10/06/2024

We all dream of a new machine that allows us to increase our knowledge about universe

Focus on performance & luminosity

Let's build it

Focus on safety, sustainability feasibility, and affordability

First, we need an accelerator technical design

Then we can design the technical infrastructures to host it

In fact, it is more an iterative process

FCC-ee Accelerators organisation

New Pilar

Accelerator Technical Design

JP. Burnet, T. Raubenheimer

- Beam transfer systems
- Beam instrumentations
- Beam Intercepting Devices
- Magnets, MDI
- Vacuum
- Power converters
- Radiation & shielding
- Radio Frequency
- Survey & alignment
- System engineering and interface management
- Radiation WG
- MDI WG
- Arc cell mock-up WG
- Systems engineering and interface management

Accelerators FCC-ee F. Zimmermann, T. Raubenheimer

Collider & Booster Design

- F. Zimmermann, C. Carli
- Parameters
- Optics
- Beam dynamics
- OP parameter interface
- Operation concept incl. BBA
- Machine protection
- Polarisation & energy calibration
- Interfaces
- Booster design WG
- EPOL WG
- Machine protection WG

Transfer Lines Design

W. Bartmann

- Parameters
- Optics
- Beam dynamics
- OP parameter interface
- Operation concept incl. BBA
- Machine protection
- Interfaces

Injector 20GeV

P. Craievich, A. Grudiev

- e-/e+ sources
- Linacs
- Damping ring

FCC-ee Accelerators organisation

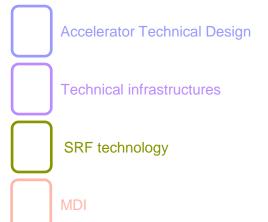
New Pilar

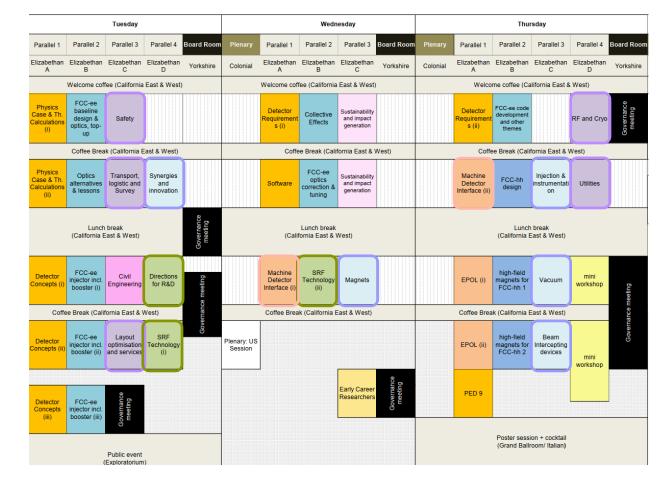
Accelerator Technical Design

JP. Burnet, T. Raubenheimer

- Beam transfer systems
- Beam instrumentations
- Beam Intercepting Devices
- Magnets, MDI
- Vacuum
- Power converters
- Radiation & shielding
- Radio Frequency
- Survey & alignment
- System engineering and interface management
- Radiation WG
- MDI WG
- Arc cell mock-up WG
- Systems engineering and interface management

Accelerators FCC-ee F. Zimmermann, T. Raubenheimer


Accelerator Technical Design Coordination


- Guide the technical design of all accelerator components, based on input from accelerator design pillar
- Enable development of overall optimized integrated systems and solutions across technologies
- Assure the interfacing to and design optimization with technical infrastructure systems and accelerator design.
- Optimisation of investment/operation cost and performance
- Integration of eco-design and sustainability aspects (energy saving modus, etc.)

ATDC kick-off meeting 28.03.24

5 sessions on Accelerator Technical Design

- 5 sessions on Technical Infrastructures
- 3 sessions on SRF technology
- 2 sessions on MDI

FCC-ee Accelerators & Infrastructures Technical Design

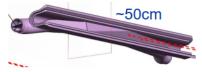
Main objectives

- > Safety
- > Sustainability
- ➢ Feasibility
- Affordability
 Cost optimisation
- Develop safe concepts
- Reduce the environmental impact
 - Identify challenges and propose solutions
- Performance Reach physics objectives

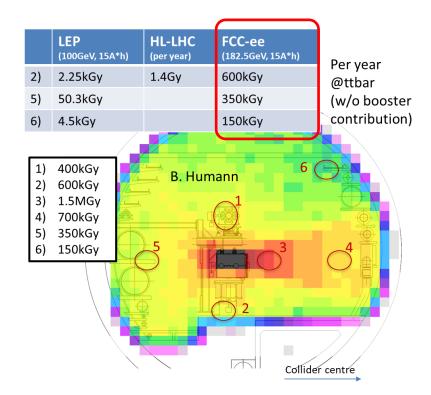
Design focused on these criteria

FCC-ee Accelerators & Infrastructures Technical Design

Some highlights since the Mid-term report

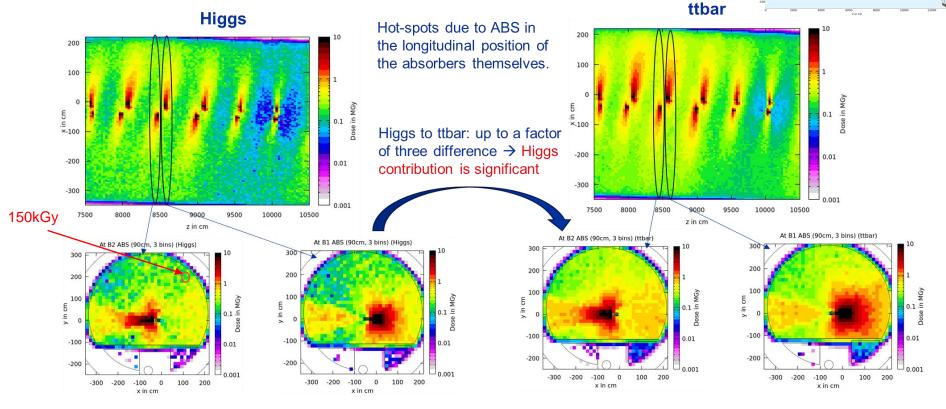

- Synchrotron radiation & ionizing doses & shielding
- Vacuum innovation
- Global optimisation tool
- Superconducting RF, R&D for energy performance
- HTS4 alternative
- Polarimeter
- Integration update
- Personnel transport
- Radioprotection
- ✤ Cooling

Feasibility


FCC-ee Collider arcs: Synchrotron Radiation Absorbers & ionizing dose

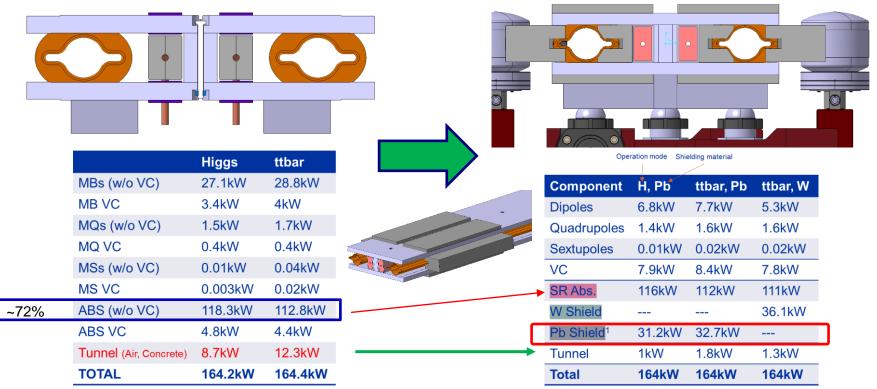
New Radiation and shielding Working Group, Anton Lechner (SY/STI), started 14 Feb. 2024

 Discrete photon absorbers (a la SuperKEKB), made of copper-alloy, are placed every few meters in the winglets of the vacuum chamber to intercept the primary SR fan (R. Kersevan et al., TE/VSC)


- Need <u>further</u> measures, since the dose values are too high for different kinds of equipment
- Possible measures include:
 - Additional (local) absorbers on the outside
 of the vacuum chambers
 - Choice of technologies (e.g. replace cables with wireless technologies where possible)
 - Radiation-hard design where unavoidable

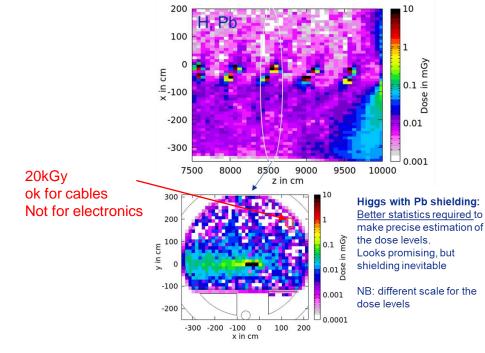
11

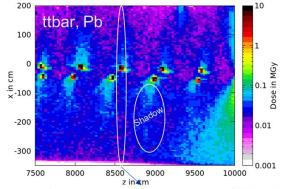
Dose levels in the tunnel without shielding

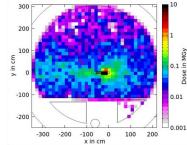


Lead shielding integration in magnets

60cm long lead shielding around each SR absorbers


+ 2300 kg / dipole 13ktons of lead in total




Dose levels in the tunnel with shielding

Simulations for Higgs and ttbar with Lead shielding

Ttbar with Pb shielding: Similar dose levels in the tunnel environment for both shielding materials. Around **20kGy/year** in area of cable trays. A reduction down to 10kGy/year is targeted.

Solution must be found for the absorber shadows of B2.

Courtesy A. Lechner, B. Humann

R2E: radiation to electronics

order of magnitude levels and effects

Electronics in the tunnel need extra shielding

	stochastic	cumulative		
	High-energy hadron fluence (cm ⁻² year ⁻¹)	Total Ionizing Dose for 10 years (Gy)	Effects on Electronics	
	10 ⁵	<<1	Possible SEE impact for commercial systems with MANY units and VERY demanding availability and reliability requirements	
	10 ⁷	<1	SEE impact for systems with multiple units and demanding availability and reliability requirements	
	10 ⁹	10	SEE mitigation (e.g. redundancy) at system level; cumulative effects can start to play a role	LHC
\bigcap	10 ¹¹	1 kGy	SEE mitigation (e.g. redundancy) at system level, very challenging TID level for COTS	
	10 ¹⁵	10 MGy	Rad-hard by design ASICs	
)

Collider vacuum design

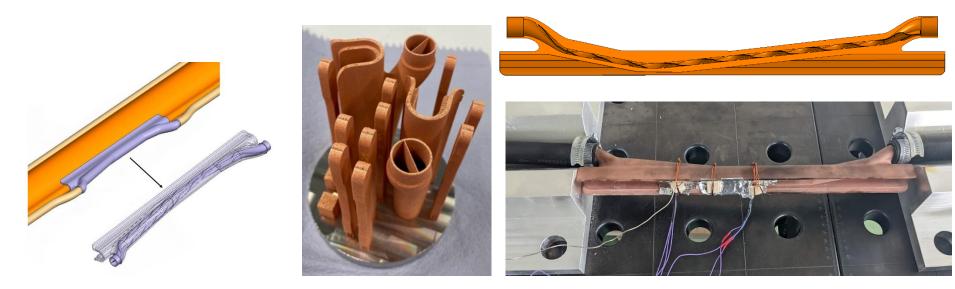
Courtesy R. Kersevan

Machine / optics design

- High Synchrotron Radiation (SR) photon flux generating high photon-stimulated desorption (PSD) gas load
- Rather low specific conductance of the vacuum chamber (dictated by the size of the quadrupole/sext opening)
- Requirement of fast vacuum conditioning so that a large integrated luminosity can be achieved
- Need for a vacuum system that minimizes e-cloud (e+ beam) and ion-trapping (e- beam) (to preserve the quality of the beam)

This leads to (Requirements):

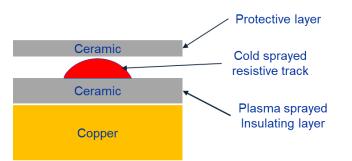
- Efficient removal of the 50 MW/beam SR power load
- Vacuum surfaces (materials, thin-films, treatments) having a low PSD yield, minimizing gas-beam interactions
- Efficient pumping, both in cost and in performance
- Minimization of the high-energy component of the Compton-scattered primary SR fan (for energies W, H, T), as per FLUKA simulations/results

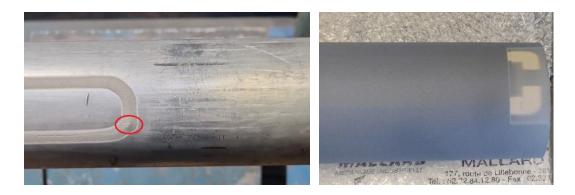

We can satisfy these requirements if we design a vacuum system based on:

- **NEG-coating** (thin, ~200 nm, to reduce resistive-wall impedance contribution)
- Primary SR fans intercepted by **localized SR absorbers**, rather than a LEP-like configuration where the SR fans are distributed more or less uniformly along the external side of the vacuum chamber

Vacuum innovation

Synchrotron Radiation Absorber 3D printed



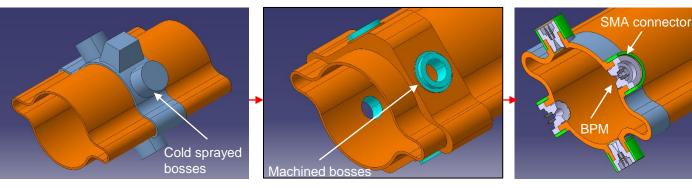

Laser Powder Bed Fusion (LPBF) has been selected as the method for the first prototype. This is the first copper 3D printed synchrotron radiation absorber.


Vacuum innovation

Courtesy C. Garion, M. Morrone

Rad-hard bake out system

OFE copper tube, 84 mm * 2 mm, 500 mm long Al_2O_3 -TiO₂ ceramic layer Track in titanium, ~ 110 mm thick, 8 mm width Distance between the tracks: ~30 mm


Bake out and NEG activation require a thermal cycle up to 230 °C +/- 20 °C. To be added : Permanent rad-hard insulation (ceramic-based)

Vacuum innovation

Courtesy C. Garion, M. Morrone

Cold-spray for Beam Position Monitors (BPM)

Global optimisation tool

Courtesy D. Aguglia, B. Wicki

The global model is composed of multiple interconnected sub-models, each intricately linked. Every sub-model is tailored to represent a distinct segment of the broader system.

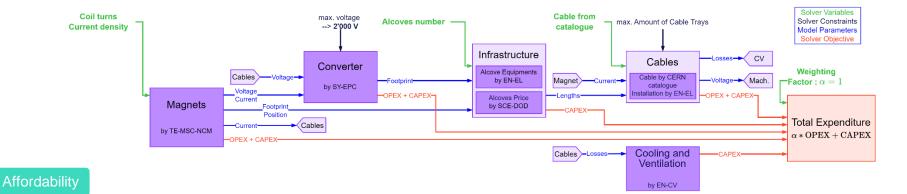
The Total Expenditure is the Sum of the Capital and Operational Expenditure of each sub-models :

TE-MSC-NCM

SY-EPC

SCE-DO

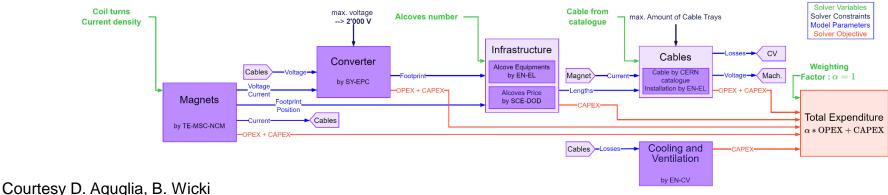
EN-EL


EN-EL

□ Magnets

- **D** Power Converters
- □ Cables + Cable-Trays
- Alcoves
- Electrical Equipment
- Cooling and Ventilation EN-CV

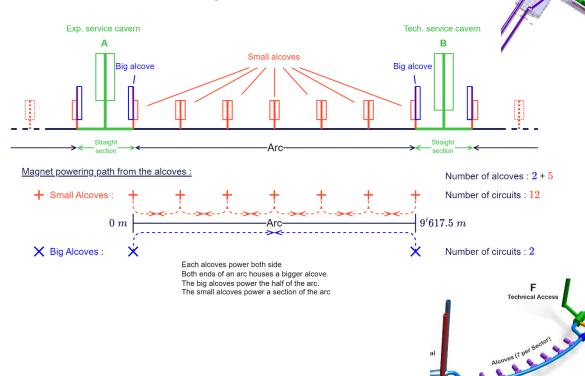
with coil turns and current density.
with existing converters + adjustment to FCC's need.
with CERN Catalogue.
with number and size of alcoves.
with number of alcoves (Equipment in Alcoves).
with cable's power losses in the arc.



Global optimisation Solving for Best TOTEX

Following slides present optimised solutions, with varying constraints. The objective being: reaching the **minimum Total Expenditure** while complying with constraints.

Solver's evolutionary optimisation algorithm identify the most likely optimal solution, meaning the best solution found within the given time frame.


Weighting Factor set to 1 so far, meaning that Operation and Capital Expenditure have the same weight when optimising. OPEX calculated over 15 years of Operation

$TOTEX = \alpha * OPEX + CAPEX, \alpha = 1$

Global optimisation tool

Arc's Small and Big Alcoves

Courtesy	D.	Aguglia,	В.	Wicki
----------	----	----------	----	-------

	Magnets powering emplacement	Big Alcoves	Small Alcoves
	Dipoles	×	
	Quadrupoles	×	
Collider	Sextupoles		+
Coll	Horizontal Correctors		+
	Vertical Correctors		+
	Skew Quadrupoles		+
	Dipoles	×	
	Quadrupoles	×	
Booster	Sextupoles	×	
Boo	Horizontal Correctors		+
	Vertical Correctors		+
	Quadrupole Correctors		+

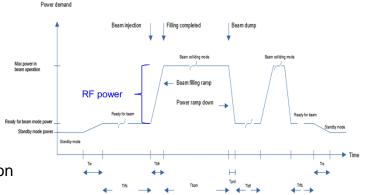
Circuits can be powered from :

Big Alcoves at the end of the arcSmall Alcoves in the arc

Choosing the alcoves impacts greatly the expenditures.

Courtesy D. Aguglia, B. Wicki

Comparing all scenarios


100.0 100 5 95.2 92.1 90.6 Normalised Detailed Expenditure [%] 86.8 90 80 4 Losses 70 in the arc [MW] 3 60 87.8 **Cable Power** 83.6 81.3 50 79.9 76.8 40 2 30 20 1 10 12.2 11.6 10.7 10.8 10.0 0 0 Sustainability : BQ in Small Alcoves All but CS in Aluminium Baseline 9 Alcoves Bigger cable Trays Higher OPEX OPEX CAPEX Weighting factor?

Sustainability

FCC-ee energy consumption per system

Balance of power

- > RF systems represent 40% of the total energy consumption at Higgs
- Magnets are only significant at ttbar (5 years of operation)
- Cryogenic is also significant only at ttbar
- Operation of cooling and ventilation needs a smart energy consumption management (eco-mode, standby mode....)

120 GeV	Days	Hours	Power OP	DT with access	DT cycle	DT long	Power Com	Power MD	Power TS	Power Shutdown			
Days	365		139	16	16	14	30	20	10	120			
RF systems			148	0	0	0	74	22	0	0	559161.1	MWh	40%
Magnets			44	0	44	0	22	44	0	0	200604.5	MWh	14%
Сгуо			13	13	13	13	13	13	13	3	83928	MWh	6%
CV			28	28	28	28	28	28	28	14	204960	MWh	15%
General services	365	8760	26	26	26	26	26	26	26	26	227760	MWh	16%
Exp + data center	365	8760	14	14	14	14	14	14	14	14	122640	MWh	9%
Power / period			273	81	125	81	177	147	81	34		MW	
Energy / Period			912027	31104	47997	27216	127580	70681	19440	163008	1399054	MWh	100%
			65.2%	2.2%	3.4%	1.9%	9.1%	5.1%	1.4%	11.7%	1399054	MWh	

FCC-ee R&D focus on energy performance

Superconducting RF as the main R&D program

High-efficiency Klystron

from efficiency at 50% (present technology) to 80% (multi-beam technology, CERN R&D program). This reduces the power demand from 233MW done to 146MW.

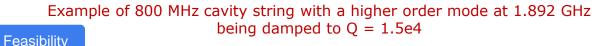
• High Q0 cavity

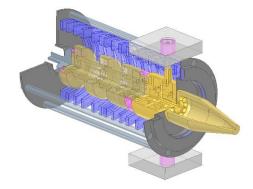
reduce the cryogenic power from 48 MW done to 35 MW (US & CERN R&D to be launched).

High efficiency cryo compressor

reduce the cryogenic power from 35MW done to 26MW (industry R&D to be launched).

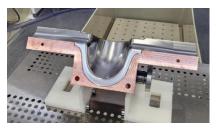
High efficiency high voltage power supply


from 90% (50hz technology) to 98% (multilevel technology, adaptation of new industrial product to our application).


FCC-ee RF systems R&D

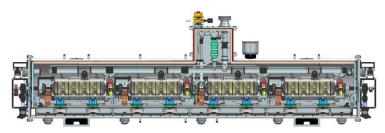
Courtesy F. Peauger, O. Brunner

- New SRF roadmap proposed for an intense hardware R&D program in the next 5-10 years, oriented towards the improvements of SRF surface resistance and RF power sources efficiency.
- New **higher order mode damping schemes** of 400 and 800 MHz cavity strings designed.
- Full study of the <u>2-cell cavity option for Z</u> (to replace 1-cell cavities) finalized with some positive outcomes.
- Successfull machining of two reference 400 MHz cavities at CERN
- First hydroformed cavities niobium coated and tested at CERN/KEK

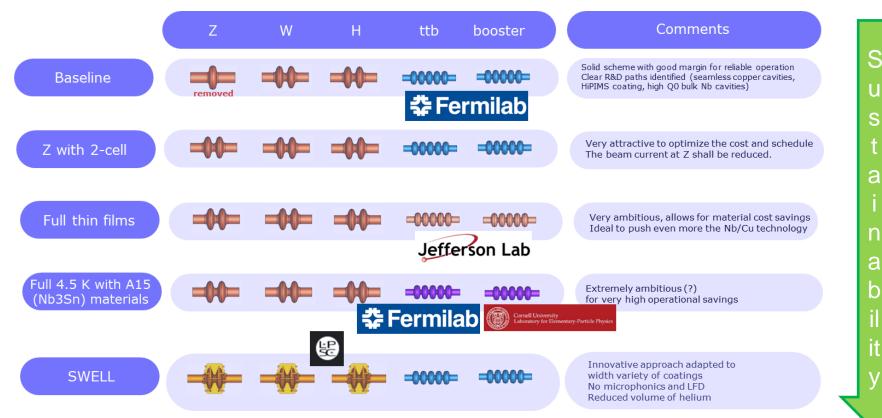

Conceptual design of the 1MW 400 MHz ultra-high efficiency klystron

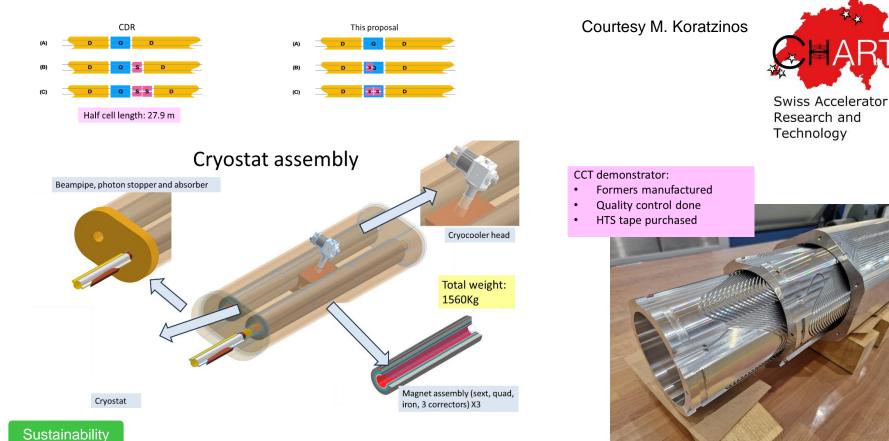
FCC-ee RF systems R&D

- Successfull niobium coating of the 1.3 GHz SWELL cavity
- R&D program on high Q0 / high gradient cavities at 800
 MHz started with FNAL.
- New strategy in discussion to explore <u>Nb3Sn material</u> where the main actors are CERN, FNAL, Cornell and Jlab. Nb3Sn material allows to operate 800 MHz cavities at 4.5 K instead of 2 K.
- Experience from EIC-SRF system design
- Experience from LCLS-II cryomodule commissioning
- Preliminary mechanical design of the 400 MHz and 800 MHz cryomodule started.
- Integration studies of the two RF straight sections in point L and H on-going.


Courtesy F. Peauger, O. Brunner

SWELL 1.3 GHz quadrant after niobium coating with HiPIMS




FCC 800 MHz cavities cryomodule preliminary design by FNAL (based on PIP II)

Superconducting RF baseline & alternative options

Courtesy F. Peauger, O. Brunner

Superconducting magnet alternative HTS4

28

Production

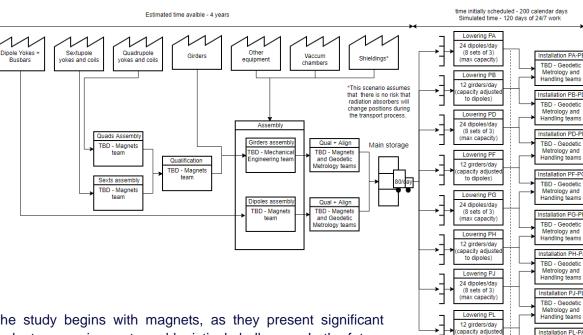
Study on Magnets Production and Installation for the FCC-ee Accelerator

Study covers:

- Workforce
- Facilities
- Equipment
- Sequence of processes

Study outcome:

- Production operating model (what activities, where, by whom, when)
- · Detailed input for the project scheduling
- · Detailed input for the project budgeting


Ongoing consultations with:

- Magnets, Superconductors and Cryostats
- Handling Engineering
- Accelerator Coordination & Engineering
- Vacuum, Surfaces & Coatings
- Geodetic Metrology

Feasibility

Mechanical and Materials Engineering

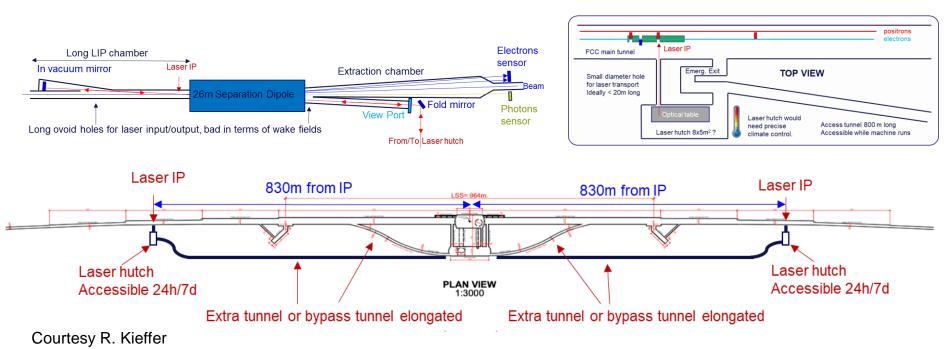
The study begins with magnets, as they present significant budgetary requirements and logistical challenges. In the future it will include other elements of the accelerator.

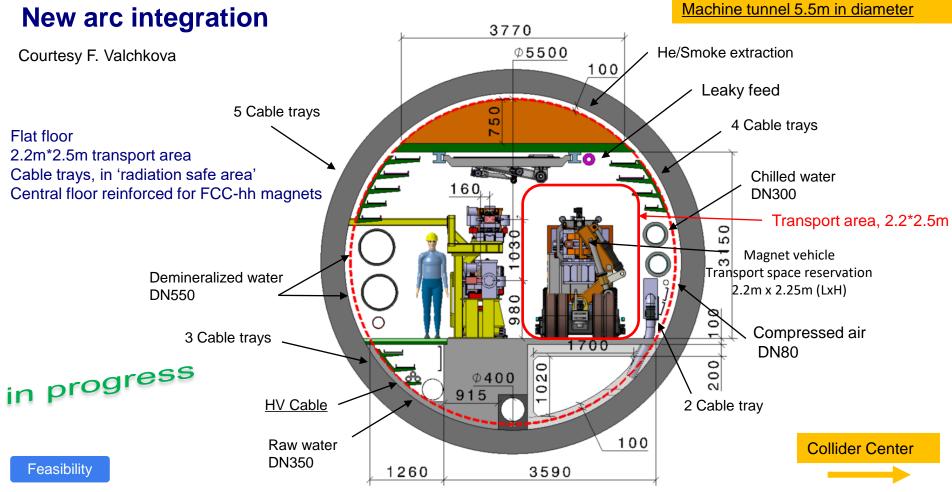
Courtesy M. Zielinski, J. Bauche

to dipoles)

TBD - Geodetic Metrology and

Handling teams


29


30

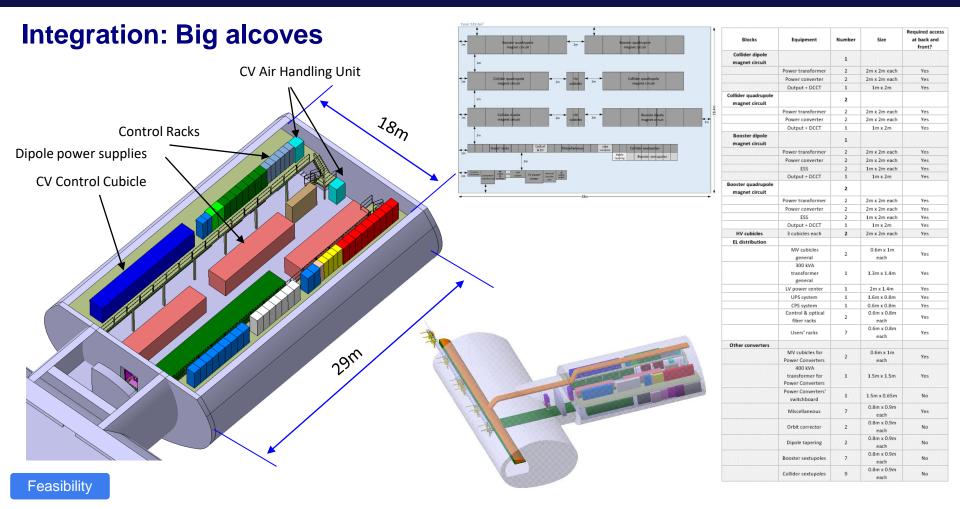
FCCee Polarimeters baseline in Experimental IP A

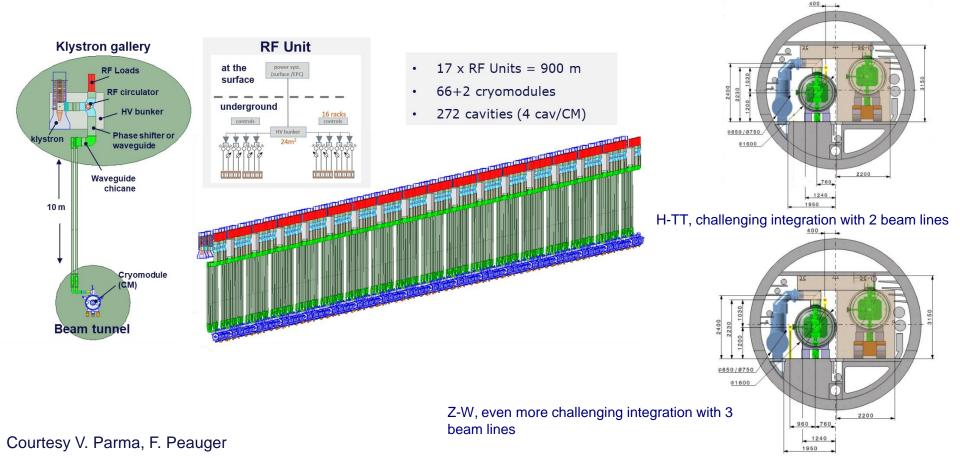
A single polarimeter per beam (2)

Option, four polarimeters per beam (8). Energy calibration done at each IP, to reduce systematic errors. Need extra-long bypass tunnel to access Laser hutch all time. Alternative to manual tuning of Laser?

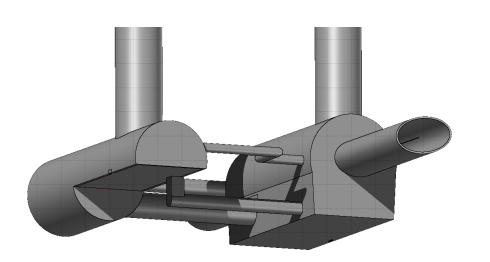
Safety

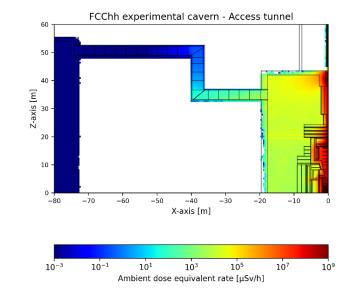
Personnel transport


- Slim version of vehicle (80cm) to allow encountering traffic and bypassing
- Fully autonomous and symmetrical in both directions
- 4 seats and sliding doors for maximum comfort while using minimal space
- Driven by wheel hub motors with brakes
- Both axles are steerable 17°
- Maximum speed of vehicle is 30 km/h



32


Integration: RF system configuration for Higgs factory

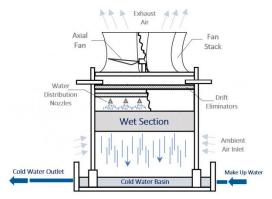


Integration: Radioprotection FLUKA simulations

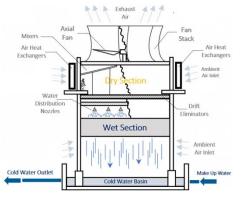
Design of the infrastructure compatible with FCC-hh

Ambient dose equivalent rate scoring in the access tunnel

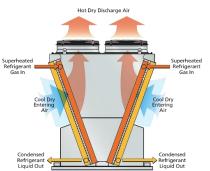
The results shown in the plot illustrate the ambient dose equivalent rate resulting from pp collisions in the access tunnel, passing through a three-legged chicane of 20 meters, 20 meters, and 30 meters respectively.


Safety

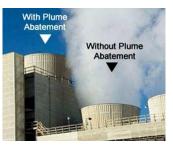
Courtesy Markus Widorski, Giacomo Lavezzari


Cooling towers

Technologies evaluation

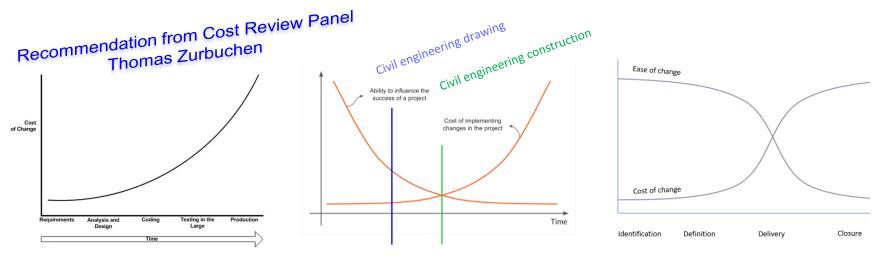

Classical tower

Classical tower with plume abatement


Dry cooling

Sustainability

Visibility of plumeHigh water consumption


- \mathbf{C}
- Plume invisible
- Approx. 10% water saving

Liquid Out
 Liquid Out
 Liquid Out
 Liquid Out
 Liquid Out
 Liquid Out

Courtesy G. Peon, I. Martin

Toward a Pre-TDR for 2028

Engineering rule / Project management: The cost of the design error and change increases exponentially

Engineering to be started as soon as possible with the goal to improve the cost estimate and to control the project budget & schedule

Summary

- Mid-term review 2023 didn't reveal showstoppers for accelerators and its infrastructures
- Still, there are some design challenges to work on
- Engineering works are to be started as soon as possible toward a pre-TDR for 2028
- Baseline, alternatives, and options to be clarified in the pre-TDR

