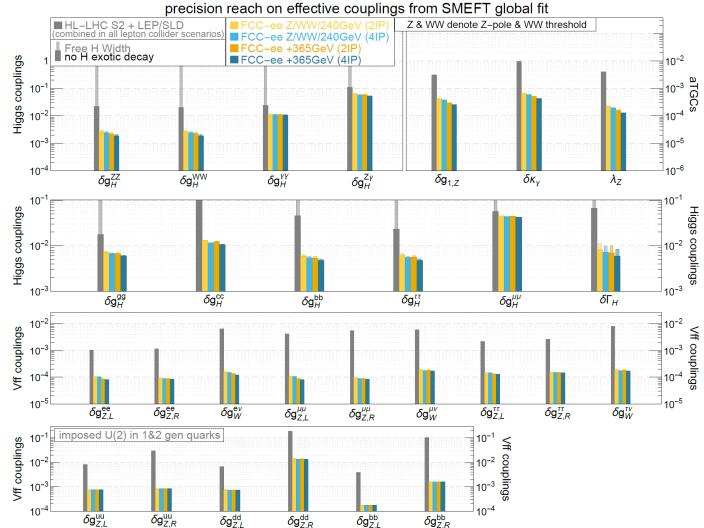
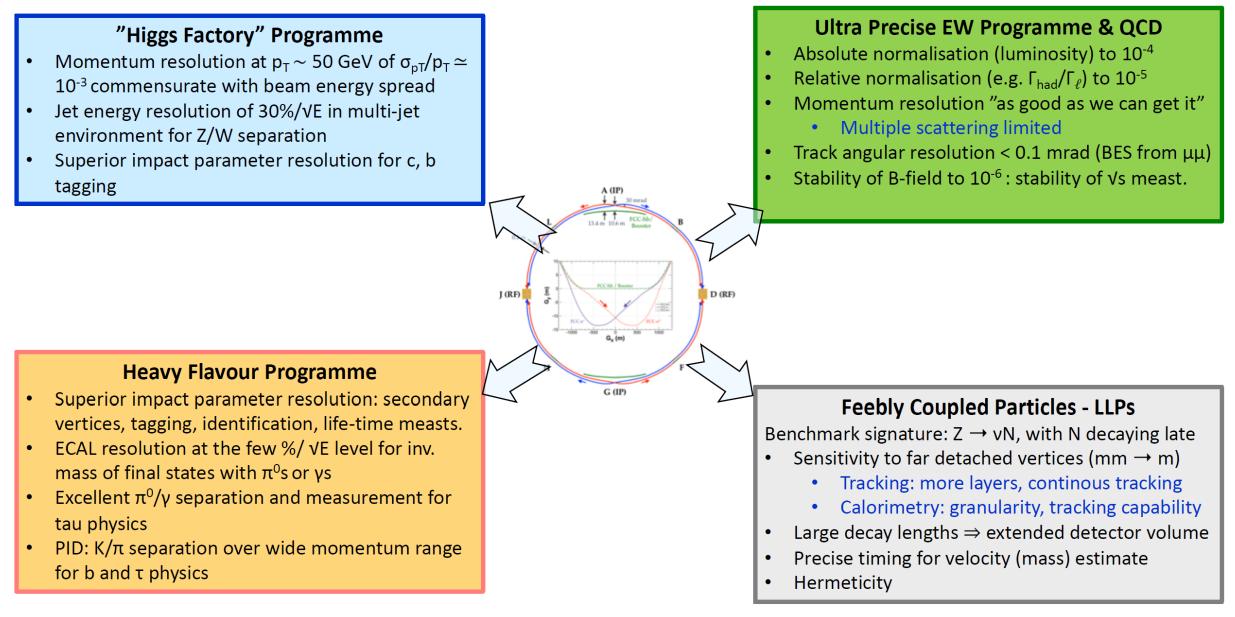

FCC-ee Detector Requirements and Benchmarks

Junjie Zhu University of Michigan June 10, 2024

FCC-ee physics program

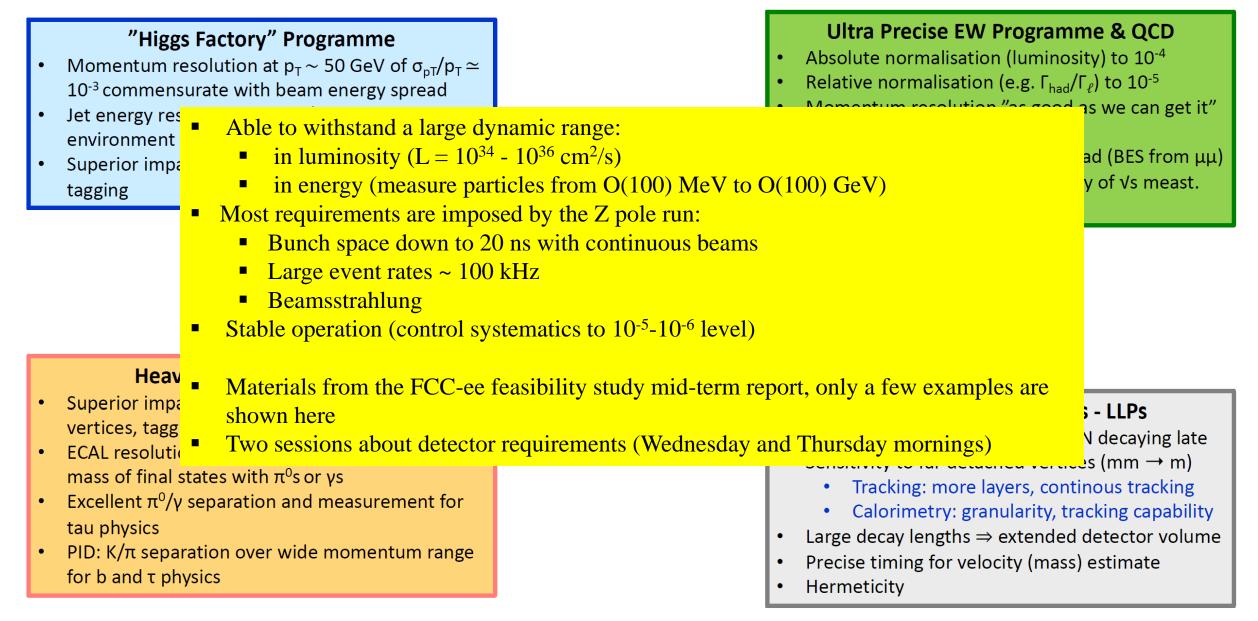

FCC-ee:

- ~100,000 Z / second
 - $\sim 1 \text{ Z} / \text{ second at LEP}$
- ~10,000 WW / hour
 - 20,000 WW in 5 years at LEP
- ~1,500 Higgs / day
 - O(10) times more than ILC
- ~1,500 top quarks / day

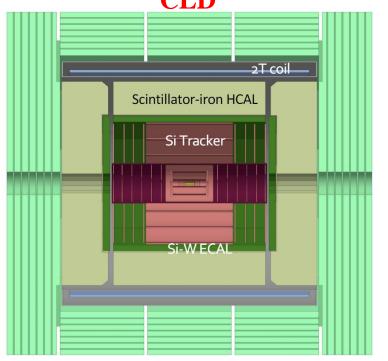

Working point	Z, years 1-2 $$	Z, later	WW, years $1-2$	WW, later	\mathbf{ZH}	$t\overline{t}$	
$\sqrt{s} \; (\text{GeV})$	88, 91, 94		157, 10	63	240	240 340-350	
$Lumi/IP (10^{34} cm^{-2} s^{-1})$	70	140	10	20	5.0	0.75	1.20
$Lumi/year (ab^{-1})$	34	68	4.8	9.6	2.4	0.36	0.58
Run time (year)	2	2	2	_	3	1	4
Number of events	$6 imes 10^{12} ext{ Z}$		$2.4 imes10^8$	WW	$\begin{array}{c} 1.45 \times 10^{6} \mathrm{ZH} \\ + \\ 45 \mathrm{k} \mathrm{WW} \rightarrow \mathrm{H} \end{array}$	$\begin{array}{c} 1.9\times10^{6}\mathrm{t\bar{t}}\\ +330\mathrm{kZH}\\ +80\mathrm{kWW}\rightarrow\mathrm{H} \end{array}$	
	LEP×	10 ⁵	LEP×	10 ³			

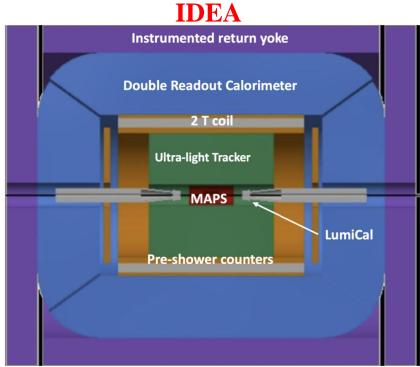
Precision electroweak and Higgs physics

Observable	present			FCC-ee	FCC-ee	Comment and
	value	±	error	Stat.	Syst.	leading error
$m_{\mathbf{Z}} (\mathrm{keV})$	91186700	±	2200	4	100	From Z line shape scan Beam energy calibration
$\Gamma_{\rm Z}~({\rm keV})$	2495200	±	2300	4	25	From Z line shape scan Beam energy calibration
$\sin^2\theta_{\rm W}^{\rm eff}(\times 10^6)$	231480	±	160	2	2.4	From $A_{FB}^{\mu\mu}$ at Z peak Beam energy calibration
$1/\alpha_{\rm QED}(m_{\rm Z}^2)(\times 10^3)$	128952	±	14	3	small	From $A_{FB}^{\mu\mu}$ at Z peak Beam energy calibration From $A_{FB}^{\mu\mu}$ off peak QED&EW errors dominate Ratio of hadrons to leptons
$\mathbf{R}^{\mathbf{Z}}_{\ell}$ (×10 ³)	20767	±	25	0.06	0.2-1	Ratio of hadrons to leptons Acceptance for leptons
$\alpha_{\rm s}({\rm m}_{\rm Z}^2)~(\times 10^4)$	1196	±	30	0.1	0.4-1.6	From R_{ℓ}^{Z}
$\sigma_{\rm had}^0 \ (\times 10^3) \ ({\rm nb})$	41541	±	37	0.1	4	Peak hadronic cross-section Luminosity measurement
$N_{\nu}(\times 10^3)$	2996	±	7	0.005	1	Z peak cross-sections Luminosity measurement
$R_b (\times 10^6)$	216290	±	660	0.3	< 60	Luminosity measurement Ratio of bb to hadrons Stat. extrapol. from SLD b-quark asymmetry at Z pole
$A^{\rm b}_{\rm FB},0~(\times 10^4)$	992	±	16	0.02	1-3	b-quark asymmetry at Z pole From jet charge
$\mathbf{A}_{\mathrm{FB}}^{\mathrm{pol},\tau}~(\times 10^4)$	1498	±	49	0.15	<2	au polarisation asymmetry au decay physics
τ lifetime (fs)	290.3	±	0.5	0.001	0.04	Radial alignment
$\tau \text{ mass (MeV)}$	1776.86	±	0.12	0.004	0.04	Momentum scale
τ leptonic $(\mu\nu_{\mu}\nu_{\tau})$ B.R. (%)	17.38	±	0.04	0.0001	0.003	Radial alignment Momentum scale e/µ/hadron separation
$m_W (MeV)$	80350	±	15	0.25	0.3	From WW threshold scan Beam energy calibration
$\Gamma_{\mathbf{W}} \ (\mathrm{MeV})$	2085	±	42	1.2	0.3	From WW threshold scan Beam energy calibration
$\alpha_{\rm s}(m_{\rm W}^2)(\times 10^4)$	1010	±	270	3	small	$\mathrm{From}~\mathbf{R}^{\mathbf{W}}_{\boldsymbol{\ell}}$
$N_{\nu}(\times 10^3)$	2920	±	50	0.8	small	$\begin{array}{c} \text{From } R^W_\ell \\ \text{Ratio of invis. to leptonic} \\ \text{in radiative Z returns} \\ \hline \end{array}$
$m_{top} \ (MeV)$	172740	±	500	17	small	From $t\bar{t}$ threshold scan QCD errors dominate
$\Gamma_{\rm top}~({\rm MeV})$	1410	±	190	45	small	From $t\bar{t}$ threshold scan QCD errors dominate
$\lambda_{\rm top}/\lambda_{\rm top}^{\rm SM}$	1.2	±	0.3	0.10	small	From $t\bar{t}$ threshold scan QCD errors dominate
ttZ couplings		±	30%	0.5 - 1.5 %	small	From $\sqrt{s} = 365 \mathrm{GeV} \mathrm{run}$



General detector requirements


From Mogens Dam


General detector requirements

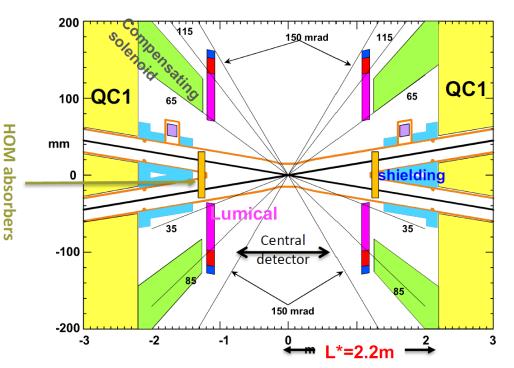
From Mogens Dam

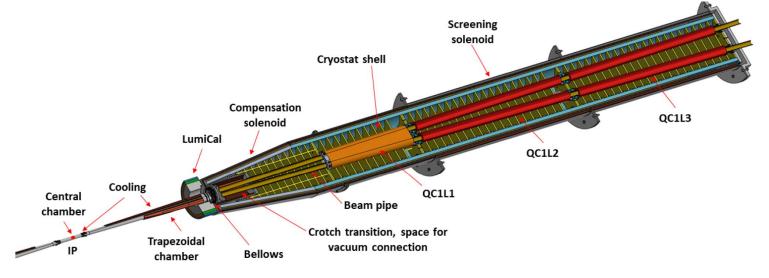
Detector benchmarks

ALLEGRO

- Full silicon vertex + strip tracker
- CALICE-like 3D-imaging highgranular calorimetry with Si-W for ECAL and Sci-iron for HCAL
- Muon system with RPCs
- Coil outside of calorimeters

- Silicon vertex + ultra-light tracker
- Monolithic dual readout calorimeter with Cu-fibers (possibly augmented by dual-readout crystal ECAL)
- Muon system with μ-RWELL
- Coil inside calorimeters

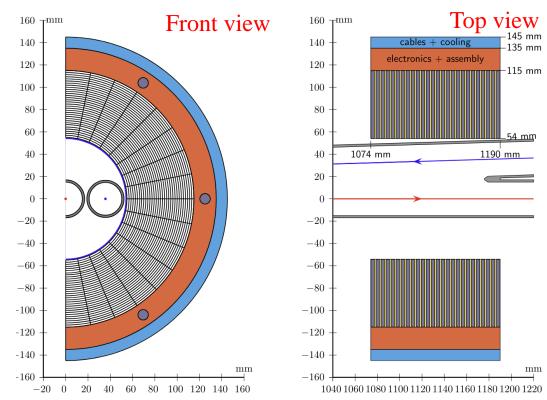

- Silicon vertex + ultra-light tracker
- High granularity noble liquid ECAL (LAr or LKr with Pb or W absorbers)
- CALICE-like or TileCal-like HCAL
- Muon system
- Coil outside of ECAL


Four detector benchmark sessions on Tuesday and Thursday afternoons

Machine Detector Interface

- Need to have flexible IR optics to allow a common IR layout at all energies
 - Large beam crossing angle 30 mrad
 - Beams entering/exiting with separate beam pipes at about 1.2 m from the IP
 - Focusing quadrupoles protrude into the detector volume
 - QC1 down to a distance of 2.2 m
 - Necessary to shield quads from detector field
- Beams cross detector field at a 15 mrad crossing angle
 - Compensate for detector field
 - Limits detector field to B = 2 Tesla
- Two MDI sessions: Wednesday afternoon and Thursday morning

2D-top view with expanded x-coordinate



Luminosity measurement

• Ambitious goal:

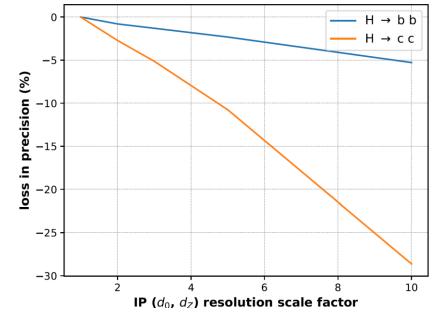
• Absolute normalization to 10⁻⁴ (O(10⁻²) for LHC)

- Relative (energy scan points) to 10⁻⁵
- Small-angle Bhabha scattering is very strongly forward peaked
- Monitors centered around outgoing beam lines:
 - $\delta R_{\min} \sim O(1 \ \mu m), \ \delta z \sim O(100 \ \mu m)$
- Current theoretical uncertainty: 3.8×10⁻⁴, major efforts also needed from the theoretical community

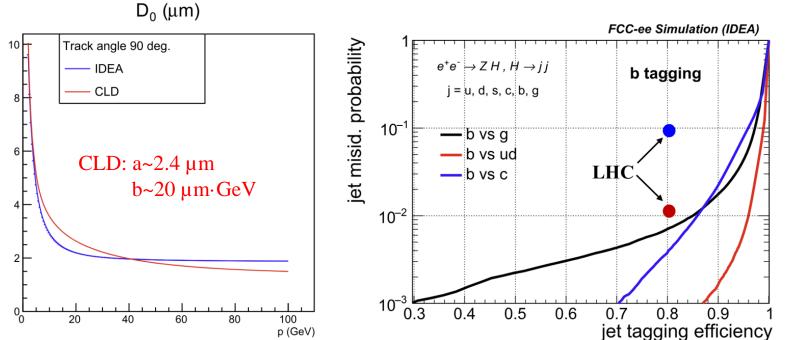
- 25 layers W+Si sandwich: 3.5-mm W plates with Si-sensor plates in 1 mm gaps
- Cylindrical detector dimensions:
 - Radius: 54 < r < 145 mm
 - Along outgoing beam line: 1074 < z < 1190 mm
- Angular coverage:

ē

et

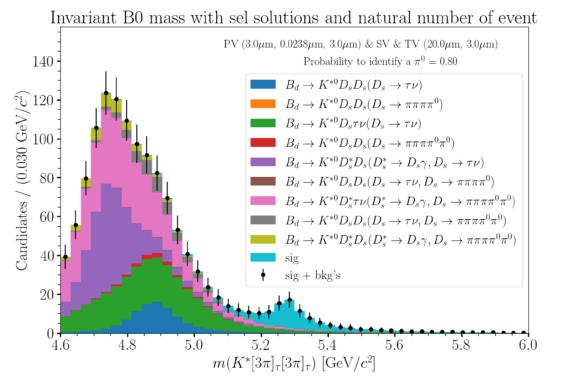

- Wide acceptance: 53-98 mrad
- Narrow acceptance: 55-96 mrad

Requirements on the Vertex detector

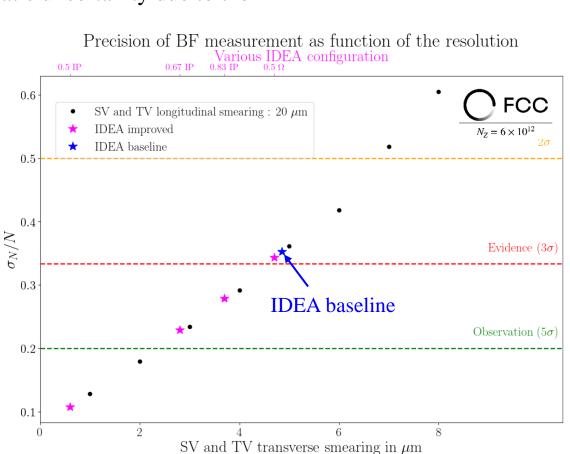

- Measurement of impact parameters, reconstruction of primary/secondary vertices, flavor tagging, lifetime measurements
- Cover an angle range of about $|\cos\theta| < 0.99$
- High resolution (~3 µm single point resolution), light material for vertex and beam pipe (MAPS, 0.3-0.5% X₀ per layer), radial distance of the first layer of the vertex detector (1.2~1.5 cm from the IP)

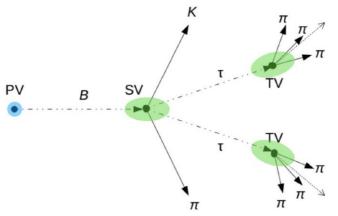
$$\sigma(d_0) = a \oplus \frac{b}{p \sin^{3/2} \theta}$$

a ~ 5 μ m, b ~ 15 μ m·GeV (FCC-ee) a ~ 25 μ m, b ~ 70 μ m·GeV (LEP) a ~ 12 μ m, b ~ 70 μ m·GeV (LHC)



Relative loss of precision on $H \rightarrow$ bb and $H \rightarrow$ cc couplings when the IP resolution is degraded by a factor shown on the x axis

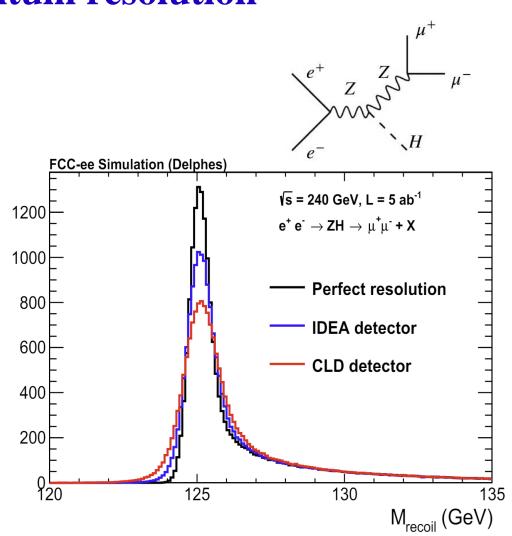



Requirements on the Vertex detector

- Resolution on the 3D distance between the primary and displaced vertex is ~10-80 µm, sufficient for most time-dependent CP violation measurements
- The measurement of $Br(B \rightarrow K^* \tau \tau) \sim 10^{-7}$ has been chosen to further explore the IP requirements, kinematics is over-constrained with the precise determination of the SV and TV (backgrounds with additional neutrinos and neutral pions)
- τ lifetime measurement sets the requirement that the systematic uncertainty due to the vertex detector misalignment should be below 10 ppm

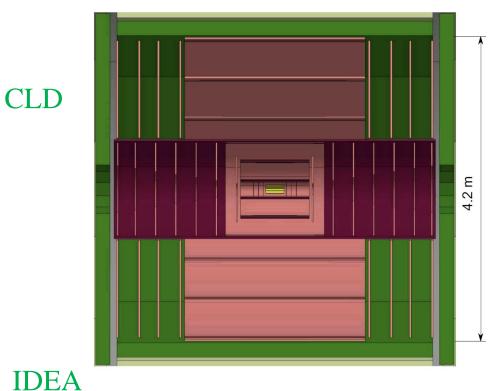
assumed 3 μm (20 $\mu m)$ in the transverse (longitudinal) direction

10

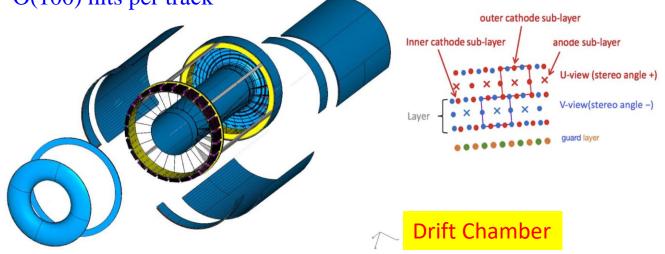

Requirements on the inner tracker momentum resolution

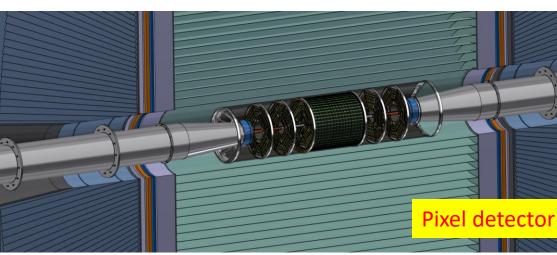
Events / 0.1 GeV

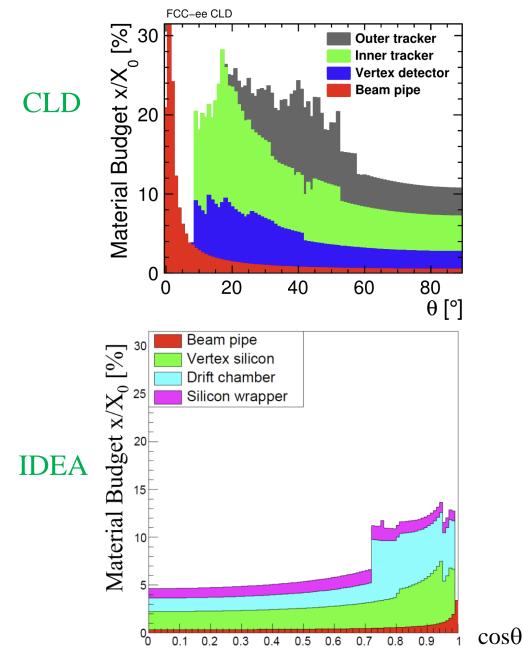
• Important to reconstruct the recoil mass distribution for the Higgs mass measurement ($\Delta m_{H} \sim 4 \text{ MeV}$)

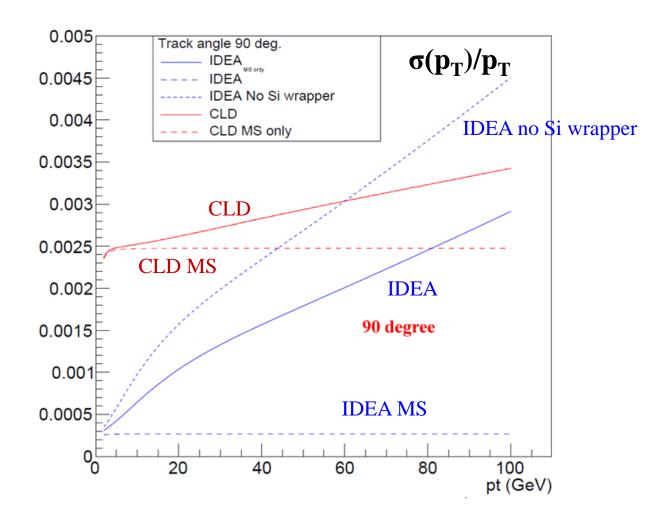

$$M_{recoil}^{2} = (\sqrt{s} - E_{l\bar{l}})^{2} - p_{l\bar{l}}^{2} = s - 2E_{l\bar{l}}\sqrt{s} + m_{l\bar{l}}^{2}$$

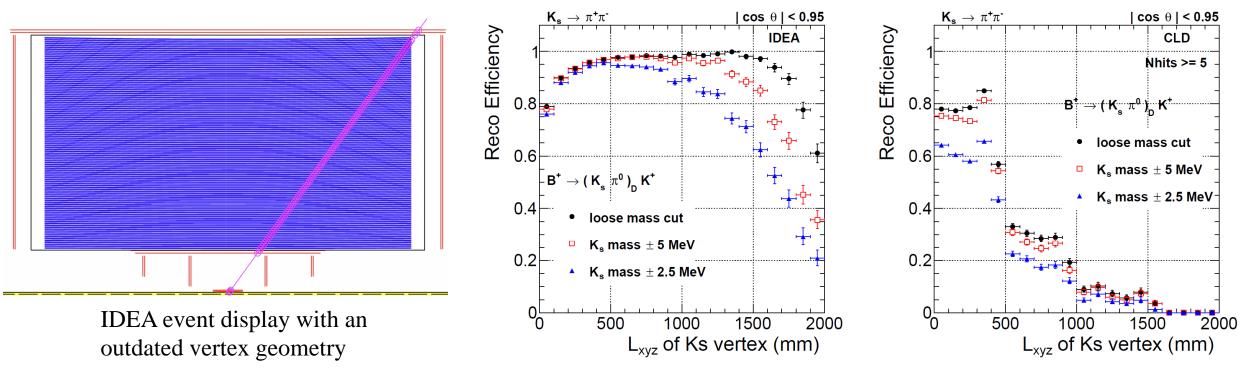
- Sensitivity dominated by the $Z \rightarrow \mu \mu$ channel
- Require the track momentum resolution should not be worse than the beam energy spread (~0.16% at 240 GeV)
 - $\sigma(p_T)/p_T \sim 0.2\%$ at 45 GeV
 - a factor of 5~10 better than the current ATLAS and CMS inner tracker momentum resolution
 - Need to reduce multiple scattering effects
 - Transparent (low material) tracker is the key


11

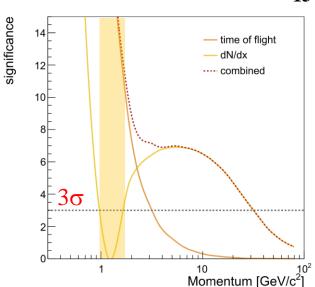

CLD and IDEA vertex and inner tracker

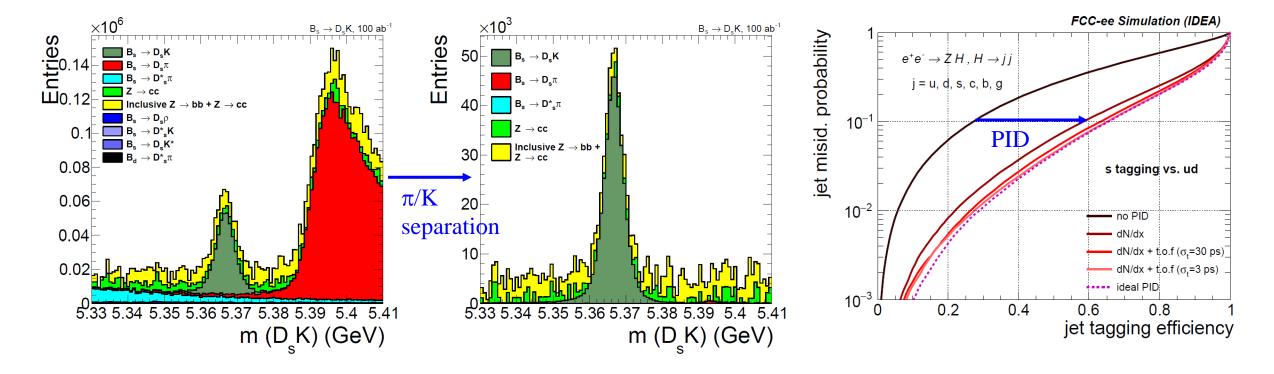

Vertex: 3 double layers for barrel and endcaps, 25 µm pitch pixels
Inner tracker: 3 short and 3 long barrel layers
7 inner and 4 outer endcap disks per side
Pixels for the first inner tracker disk, elsewhere 50 µm pitch strips
12-18 hits per track


Vertex: 3 inner barrel layers, 25 µm pitch pixels
2 outer barrel layers, 50 µm pitch pixels
3 endcap disks per side
DCH: 112 layers of square-cell drift chambers 12×12 mm² square
cell from R=0.35 m to R=2m
Outer silicon wrapper at 2 m
O(100) hits per track


CLD and IDEA vertex and inner tracker material and resolution

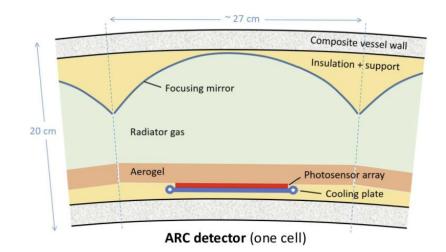
Inner tracker with a gaseous detector

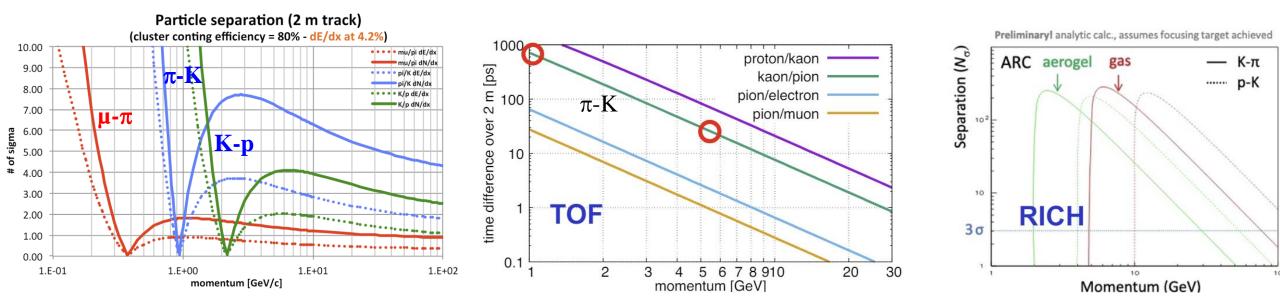

- A gaseous tracker is crucial for low material, pattern recognition, LLP searches, and PID capability
- Ks $\rightarrow \pi^+\pi^-$ reconstruction in the decay of B⁺ meson:



- A silicon+TPC tracker is under consideration for CLD
- A straw tracker could also be a good option for a gaseous tracker

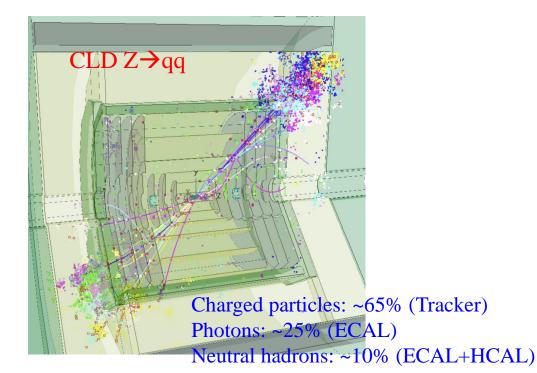
Requirements on particle ID capability

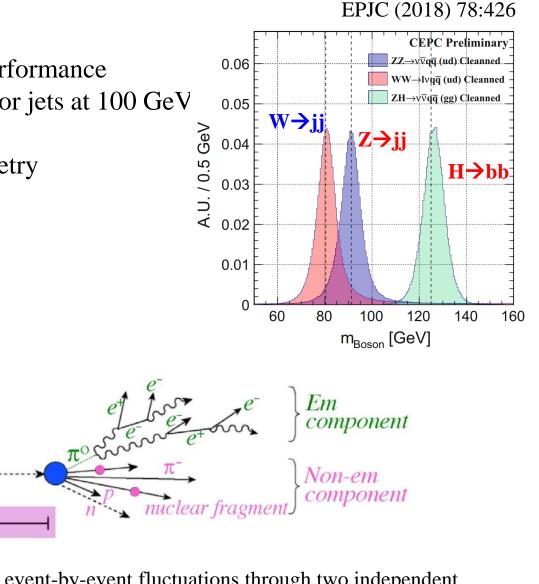

- Essential for flavor physics and bring significant benefits for other areas
 - Flavor physics measurements: $B_{S}^{0} \rightarrow D_{S}^{\pm} K^{\mp}, B \rightarrow K^{*} \nu \nu, B_{s} \rightarrow \phi \nu \nu, \dots$
 - s-quark jet identification \rightarrow kaon identification (H \rightarrow ss, V_{ts}, V_{bs}, H \rightarrow bs, FCNCs, ...)
- Challenges: have good PID for the whole momentum range (O(100) MeV to O(100) GeV)
- Toolbox:
 - High momentum: dE/dx (dN/dx) from drift chambers, Cherenkov detector (RICH)
 - Low momentum: time of flight



Particle ID capability

- **IDEA drift chamber** promises $>3\sigma \pi/K$ separation up to 50-100 GeV
 - dN/dx is a factor of ~2 better than dE/dx
 - Can be alleviated by TOF measurement of $\delta T \lesssim 500$ ps for the region around 1 GeV
- Time of flight (TOF) alone over 2 m (for example, LGAD)
 - Could give $3\sigma \pi/K$ separation up to ~3 (5) GeV with the 30 (10) ps resolution
- Alternative approaches, in particular compact gaseous RICH counters are also investigated (e.g. Array of RICH Cells – ARC)
 - Give $3\sigma \pi/K$ separation from 5 GeV to ~80 GeV

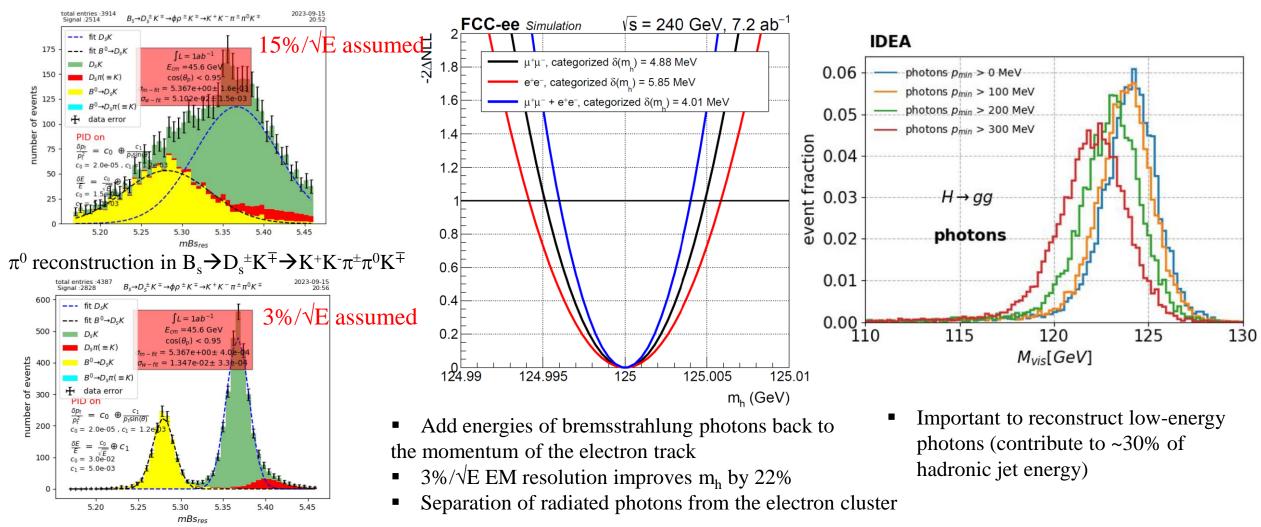

Calorimetry

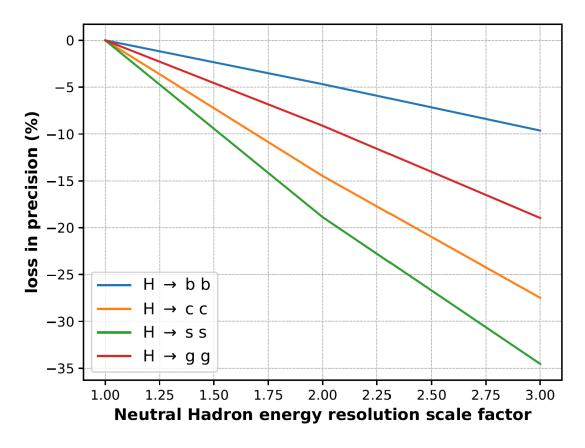

- Jet energy resolution is a key benchmark of the e⁺e⁻ detector performance
- Important to build calorimeters that can achieve ΔE/E ~ 3-4% for jets at 100 GeV to separate hadronically-decayed W and Z bosons

ABSORBER

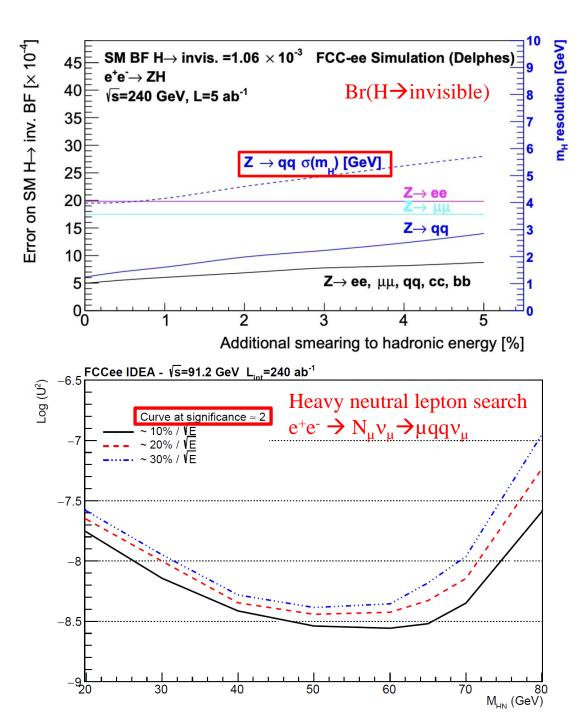
hadron

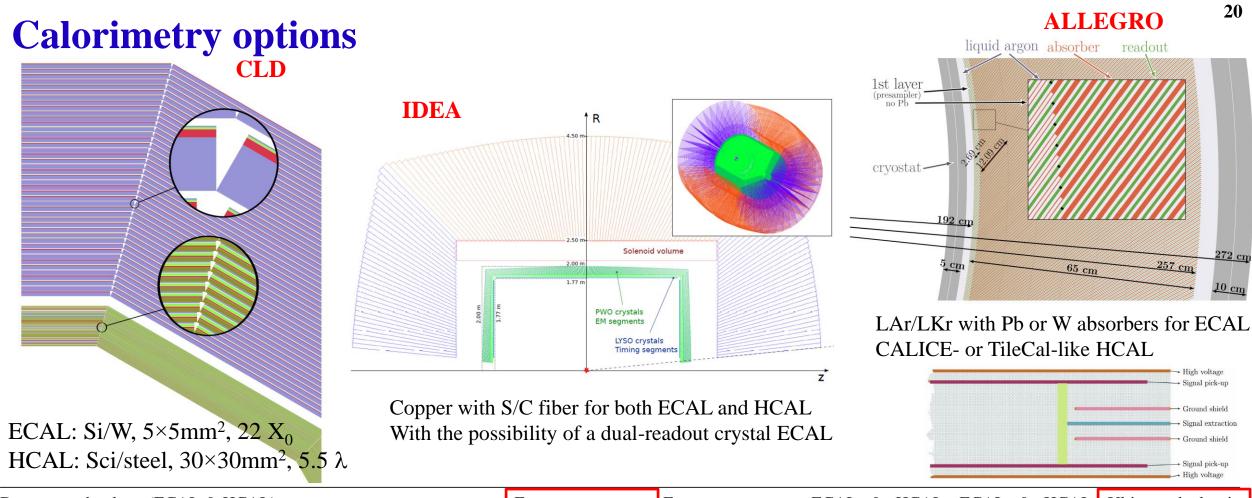
- Very hard to achieve this with a traditional approach to calorimetry
 - Limited by a typical HCAL resolution of $>50\%/\sqrt{E}$
- Two different but complementary approaches considered:
 - High granularity calorimeter Particle flow algorithm
 - Dual Readout (DRO) calorimeter



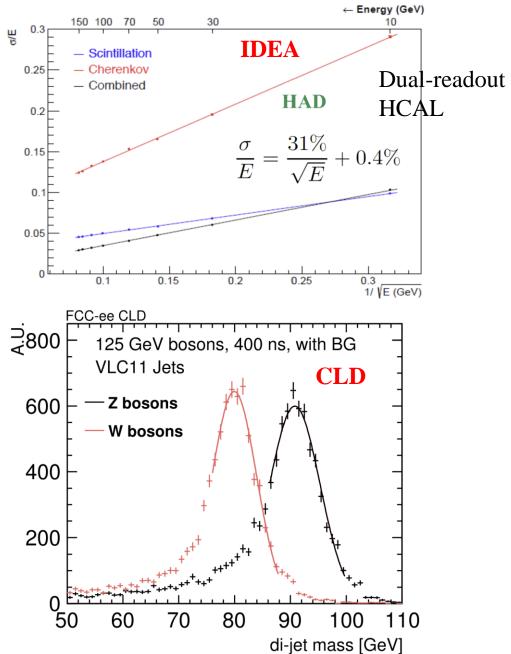

Compensate event-by-event fluctuations through two independent shower-detection processes: scintillation and Cherenkov light production

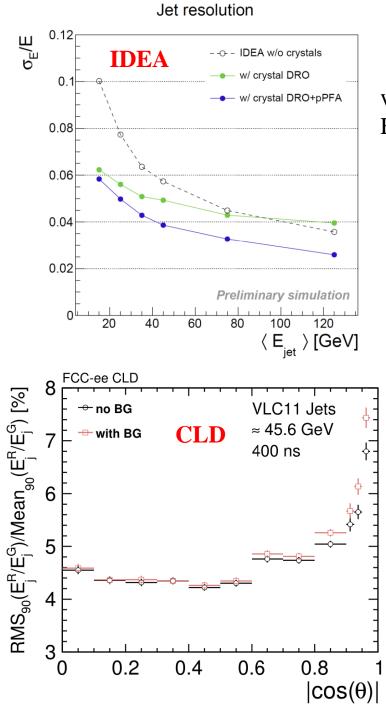
Requirements on ECAL


- EM calorimeter with a resolution of 10-15% / \sqrt{E} for photons (~25% of jet energies) sufficient for jet energy resolution
- Many flavor physics benchmarks (e.g. $B_s \rightarrow D_s K$, $B_0 \rightarrow \pi^0 \pi^0$, $B_s \rightarrow K^* \tau \tau$), Higgs, new physics searches (e.g. $Z \rightarrow \mu e, \tau \rightarrow \mu \gamma$, $e^+e^- \rightarrow a\gamma \rightarrow \gamma\gamma\gamma$), bremsstrahlung recovery, tau polarization (separate $\tau^{\pm} \rightarrow \rho^{\pm} \nu \rightarrow \pi^{\pm} \pi^0 \nu$ and $\tau^{\pm} \rightarrow \pi^{\pm} \nu$) put stringent requirements on ECAL resolution and granularity (low energy photon reconstruction, π^0 identification etc)



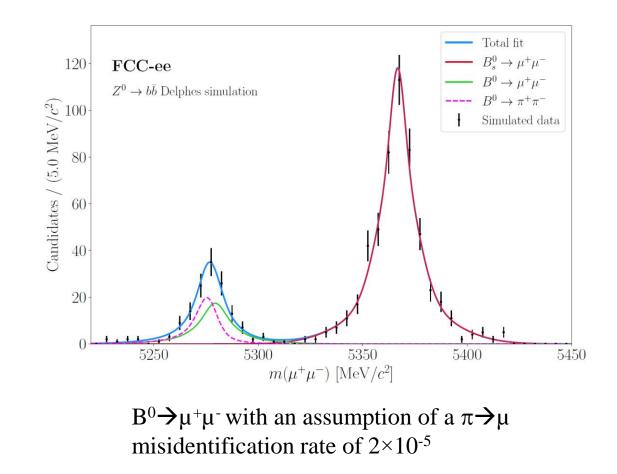
Requirements on HCAL


Degradation on Br(H→jj) measurements due to worse neutral hadrons energy resolution SF=1: IDEA dual-readout calorimeter SF~2: ATLAS SF~3: CMS



Detector technology (ECAL & HCAL)	E.m. energy res. stochastic term	E.m. energy res. constant term	had. energy reso-	0,	Ultimate hadronic energy res. incl. PFlow (for 50 GeV jets)
Highly granular Si/W based ECAL & Scintillator based HCAL	15 – 17 % [12,20]	1% [12,20]	45 - 50 % [20,45]	$pprox 6 \ \% \ ?$	4 % [20]
Highly granular Noble liquid based ECAL & Scintillator based HCAL	8–10% [24,27,46]	< 1 % [24,27,47]	$\approx 40\%$ [27,28]	pprox 6% ?	3-4%?
Dual-readout Fibre calorimeter	11% [48]	< 1% [48]	$\approx 30\%$ [48]	4–5% [49]	3-4%?
Hybrid crystal and Dual-readout calorimeter	3 % [30]	< 1 % [30]	$\approx 26\%$ [30]	5-6% [30,50]	3–4 % [50]

Calorimeter resolutions



w/ dual-readout crystal ECAL and PFA

Requirements on the muon system

- Identify muons with high efficiency and serve as "tail-catcher" for the hadron showers that may not be fully contained in the calorimeter
- Important for long-lived particles that decay outside the tracker/calorimeter volume
- Technologies considered: RPC, μ-RWELL, scintillator bars, ...
- The requirements on the standalone momentum resolution and position resolution need to be quantified (work in progress)

Summary

- Very broad ranges of interesting physics to study at the FCC-ee
- Physics goals we want to achieve put strong constraints on detector design and performances
- Momentum resolution: $\sigma(\mathbf{p}_T)/\mathbf{p}_T^2 \sim 3-4 \times 10^{-5}$ to match the beam energy spread
- Jet energy resolution: $\sigma_E / E \sim 30\% / \sqrt{E}$ to separate W and Z hadronic decays
- Electron/photon energy resolution: $\sigma_E/E < 15\%/\sqrt{E}$ enough for jet resolution and m_h measurement, better resolution needed for low-energy photon and π^0 reconstruction
- Impact parameter resolution:

$$\sigma(d_0) = a \oplus \frac{b}{p \sin^{3/2} \theta} \qquad a \sim 5 \,\mu\text{m}, \, b \sim 15 \,\mu\text{m}\cdot\text{GeV} \text{ (FCC-ee)}$$

- Particle identification: μ - π , π -K, K-p separation, $e/\gamma/\mu/\pi^0$ identification for a wide momentum range
- Magnetic field: ≤ 2 Tesla
- Absolute luminosity measurement: 10⁻⁴, and relative measurement between energy scan points: 10⁻⁵, set strong constraints on the design and mechanical assembly of the LumiCal detector
- Track angular resolution: **<0.1 mrad**
- Stability of the magnetic field: <10⁻⁶
- Fine granularity for ECAL and HCAL
- Large detector acceptances for the tracker, ECAL, HCAL, and muon systems
- More discussions about requirements and the three detector benchmarks can be found in the FCC-ee feasibility study mid-term report
- Continuing work to better understand physics requirements on detector performance and to optimize detector designs