

# FUTURE CIRCULAR COLLIDER



# DC NETWORKS FOR THE POWERING OF THE FCC

M. Colmenero, D.Aguglia, S. Pittet, B. Wicki

**CERN** Electrical Power Converter (EPC) Group, Accelerator Systems (SY Dept.)

> FCC Week 10-14 June 2024 San Francisco, USA

# **Table of Contents**

- Introduction to DC: Advantages and Challenges
- DC Network Architectures
- Local DC networks: How to improve the existing network using DC
- FCC High-Voltage DC Transmission Network
- Summary of FCC DC Powering Scenarios
- Conclusions

### **Introduction to DC: Advantages and Challenges**

- ► No reactive power
  - Lower transmission constraints
  - Transmission capacity increase
- Avoid high frequency effects (skin and proximity)
- Higher transmission efficiency

# DC networks are based on power electronics

- Direct integration of DC sources
- Reduce converter stages
- Reduce system footprint



DC networks could help to further optimize the FCC electrical network

### Introduction to DC: Advantages and Challenges



- Voltage conversions are difficult in DC, especially High Voltage to Low Voltage
- ► All power is managed by power converters: **lower reliability**
- Sensitivity to faults is higher in DC: difficult protection
- Two possible uses of DC network:

RF / High Voltage Transmission



**DC Loads** 

 $\geq$ 

### Introduction to DC: Network Architectures

Two DC network architectures under consideration





Use → 100 km high-voltage loop as the main supply of FCC access points in AC

#### **Introduction to DC: Network Architectures**

**Two DC network architectures under consideration** 





Addressed by studying how LHC point 2 could be converter to DC

Addressed by CAPEX/OPEX analysis comparing with other AC solutions unders study



- > The LHC Point 2 AC network has been analyzed and weak points identified in view of the FCC
- ➢ Issue: Large number of bulky 50 Hz Transformers in AC → Significant impact on required surface



FCC Network should aim to reduce the footprint required by electrical equipment





- The LHC Point 2 AC network has been analyzed and weak points identified in view of the FCC
- Issue: Power quality and inefficiencies issues caused by harmonics and reactive power consumption <u>Additional losses caused by reactive power and harmonics</u> <u>Impact on energy efficiency</u>





FCC will require new technologies for better managing of reactive power

➢ Issue: voltage glitches occur relatively often → <u>Reduction of availability of the machine</u>

FCC network needs to be robust against network perturbations



#### 50 Hz Transformers are replaced by Solid State Transformers

- Operated at high-frequency
- High-efficiency
- Compact and more modular
- Reduction in footprint required by magnetic components
- Especially relevant for power converters

#### AC/DC Conversion is centralized

- Cost single 2MW AC/DC << Cost 2000x1 kW converter \*</p>
- Potential increased in system efficiency and footprint

#### **Reactive power issues intrinsically solved with DC grids**

Less need of compensating equipment

#### DC network behaves as a firewall against grid perturbations

• Better availability of the machine





© Flexible Elektrische Netze FEN GmbH

#### AC/DC Rectifiers to be installed

Space needs to be allocated for these converters

#### AC breakers are replaced by DC breakers

- More expensive and difficult protection
- Limits interoperability between converters and network
- Still not fully solved

#### **Complexity significantly increases**

- Simple transformers are replaced by power converters → maintenance and reliability issues
- Is footprint really improving? → Volume required by converter
- Lack of standardization
  - Voltage levels of loads?
- <u>Triple conversion (AC $\rightarrow$ DC $\rightarrow$ AC) for AC loads</u>

Complete replacement of an AC network by a DC network is not feasible → Focus on converting only to DC certain circuits









- Reduction of size of magnetics
- Higher modularity and easier repairing
- Single AC/DC rectification stage
- <u>Rectifier can be used to control AC grid</u>
- Efficiency difficult to quantify

Promissing solution to be further investigated for the design of the FCC Power Converter Alcoves

## FCC High-Voltage DC Transmission

DC Networks can be used <u>to transmit power at a larger</u> <u>scale</u>: over the 90 km ring

- > Proposed AC High Voltage Network Scheme
  - Running through the main tunnel
  - 132 kV and 66 kV options being considered





# FCC High-Voltage Transmission Network

DC Networks can be used <u>to transmit power at a</u> <u>larger scale</u>: over the 90 km ring

#### Well-stablished conversion technology

- Modular Multilevel Converters
- High-efficiency and reliability



# **Summary of FCC DC Powering Scenarios**

#### Local Distribution in DC

| Powering Solution | Advantages                    | Challenges                     | Roadmap                                       |
|-------------------|-------------------------------|--------------------------------|-----------------------------------------------|
| Purely AC         | Extensive expertise           | Need of compensating equipment | Better definition of FCC load characteristics |
|                   | Simplicity                    | DC loads are not optimized     | CAPEX/OPEX including compensation             |
| Purely DC         | Modularity<br>Controllability | High complexity<br>High cost   | Abandoned                                     |
| Mixed AC/DC       | Optimization for loads        | Grouping of DC loads           | Technological feasibility                     |
|                   | DC to compensate AC           | Standardization                | CAPEX/OPEX estimation                         |

#### > DC for transmission

| Powering Solution | Advantages                                                                | Challenges                     | Roadmap                                                          |
|-------------------|---------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------|
| Purely AC         | Extensive expertise<br>Simplicity                                         | Need of compensating equipment | Addition of FACTS to models<br>CAPEX/OPEX including compensation |
| Purely DC         | Lower cost of cable<br>Robust to network perturbations<br>Controllability | Higher complexity              | CAPEX/OPEX estimation                                            |

#### Work in more detailed models for taking a final decision

# Conclusions

FCC

- Local DC Distribution
- > <u>An FCC network based on DC technologies is not feasible</u>. Nevertheless...
- Studies performed show <u>advantages when DC is used for supplying very</u> <u>specific equipment → need to define which equipment</u>
- More detailed studies need to be conducted → <u>R&D needed in collaboration with</u> <u>industry.</u>
- HVDC Transmission Ring
  - > Most promising solution: technology available in industry
  - A decision can only be made when compared with a detailed AC solution and supported by industrial partners.
  - Very important to find collaborations with industry to take a decision in the following years



# Thank you for your attention.

○ FCC