FCC Week 2024 10 - 14 June 2023 San Francisco, United States

GLOBAL OPTIMISATION

B. Wicki, S. Pittet, D. Aguglia, M. Colmenero Moratalla

CERN Accelerator Systems (SY Dept.), Electrical Power Converter (EPC Group)

Many thanks to:

J. Bauche, C. Jaermyr Erikson, L. Von Freeden and H. Deveci, CERN TE-MSC M. Parodi and C. Marcel, CERN EN-EL J.-P. Burnet, CERN ATS-DO

FCC

G. Peon and I. Martin Melero, CERN EN-CV T. Paul Watson and L. Bromiley, CERN SCE-DOD F. Valchkova-Georgieva, CERN EN-ACE

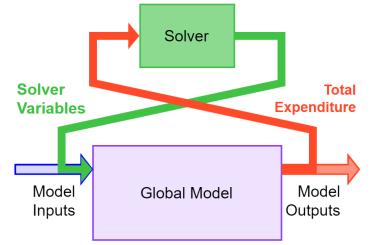

11 June 2024

Table of Content

- □ Considerations of Global Model :
 - Submodels
 - Parameters
 - Price

FCC

- Constraints
- Small and Big Alcoves in the Arcs
- Magnet Powering Circuits
- □ Global Optimisation Solving for Best Total Expenditure:
 - Increasing Number of Alcoves
 - Optimising Collider Magnet Parameters
 - Optimising Cable Trays Integration
 - Powering from Small or Big Alcoves ?
 - Choosing Aluminium VS Copper Coils
 - Comparing All Scenarios
- Conclusion Optimised Scenarios

□ Magnets

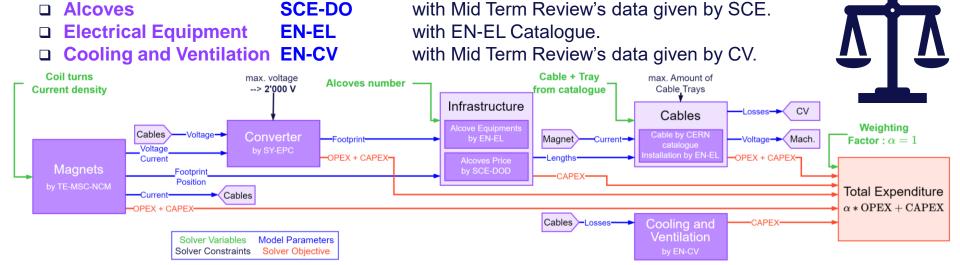
Power Converters

Cables + Cable-Trays

Submodels of Global Model

SY-EPC

EN-EL


The global model is composed of multiple interconnected sub-models, each intricately linked. Every submodel is tailored to represent a distinct segment of the broader system.

TE-MSC-NCM with script modelling MSC's magnets.

with CERN Catalogue.

with existing converters + adjustment to FCC's need.

The Total Expenditure is the Sum of the Capital and Operational Expenditure of each submodels :

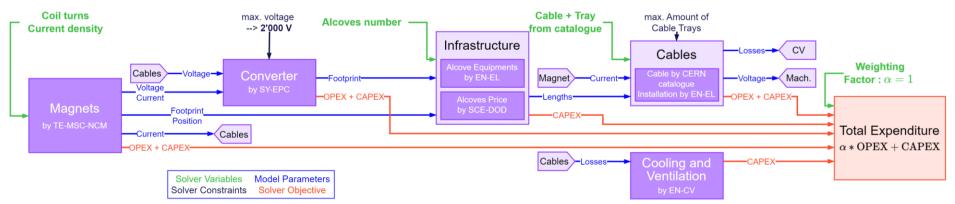
Parameter Consideration of Global Model

Parameters taken into account :

□ Magnets

Alcoves

- Power Converters
- □ Cables + Cable-Trays
- : Material, Power Losses, Installation : Volume, Schedule change


: Material, Power Losses

: Material, Power Losses

- Electrical Equipment : Material in Alcoves
- □ Cooling and Ventilation : Equipment upgrade needed to accommodate Cable's power losses

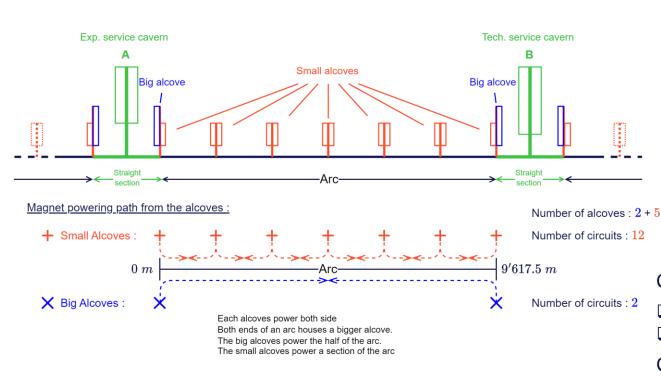
More parameters/submodels can and will be implemented.

The current submodels were chosen as most representative of current input parameters.

Price Consideration and Constraints of Global Model

Price consideration taken in the global model :

- Electricity cost for 15 years of operation, integrated energy level considering machine OP cycles.
- **Booster Mean power** as OPEX.
- Length of cable for each circuit is considered as CAPEX and OPEX.
- □ Alcove volume and schedule change are considered as CAPEX.
 - Schedule change has other impact beyond cost.


Constraints accounted for :

- **Space taken in the cable trays**.
- □ Number of alcoves.
- **Power losses in the air** for cooling limits.
- □ Maximum voltage for cable isolation.
- Water cooling performance of magnet design.

Pricing Model **Not** Accounted for :

- □ Uninstallation of equipment
- Operational Expenditure of Cooling and Ventilation
- Radiation protection
- **D** ...

Small and Big Alcoves in the Arcs

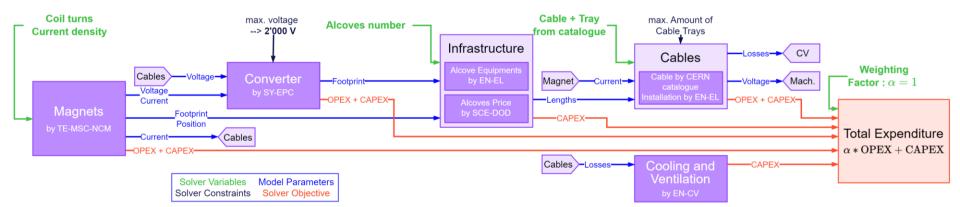
Magnets powering emplacement		Big Alcoves	Small Alcoves
Collider	Dipoles	×	
	Quadrupoles	×	
	Sextupoles		+
	Horizontal Correctors		+
	Vertical Correctors		+
	Skew Quadrupoles		+
Booster	Dipoles	×	
	Quadrupoles	×	
	Sextupoles	×	
	Horizontal Correctors		+
	Vertical Correctors		+
	Quadrupole Correctors		+

Circuits can be powered from :

□ Big Alcoves at the end of the arc □ Small Alcoves in the arc

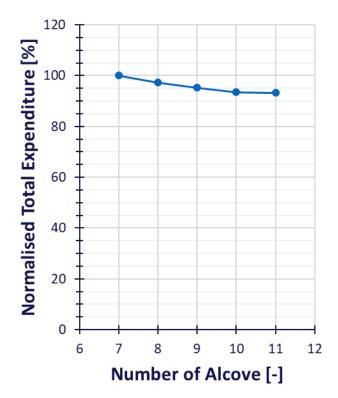
Choosing the alcoves impacts greatly the expenditures.

Magnet Powering Circuits


Collider Magnets	N° Magnets	N° Circuits	Booster Magnets	N° Magnets	N° Circuits
Dipole	2 840	16	Dipole	2 944	16
Quadrupole	2 840	32	Quadrupole	2 944	32
Sextupole	5 080	706	Sextupole	1 040	64
Sub-Total	10 760	754	Sub-Total	6 928	112
Dipole Tapering	5 680	710	Dipole Tapering		
Quadrupole Tapering	5 680	710	Quadrupole Tapering		
Sub-Total	11 360	1 420	Sub-Total		
Horizontal Corrector	2 824	2 824	Horizontal Corrector	? 2944 ?	2 944
Vertical Corrector	2 824	2 824	Vertical Corrector	? 2944 ?	2 944
Quadrupole Corrector			Quadrupole Corrector	? 2944 ?	2 944
Skew Quadrupole	2 824	2 824	Skew Quadrupole	0	
Sub-Total	8 472	8 472	Sub-Total	8 832	8 832
Straight Section	?	?	Straight Section	?	?
Total	30 592	10 646	Total	15 760	8 944

Global Optimisation Solving for Best TOTEX

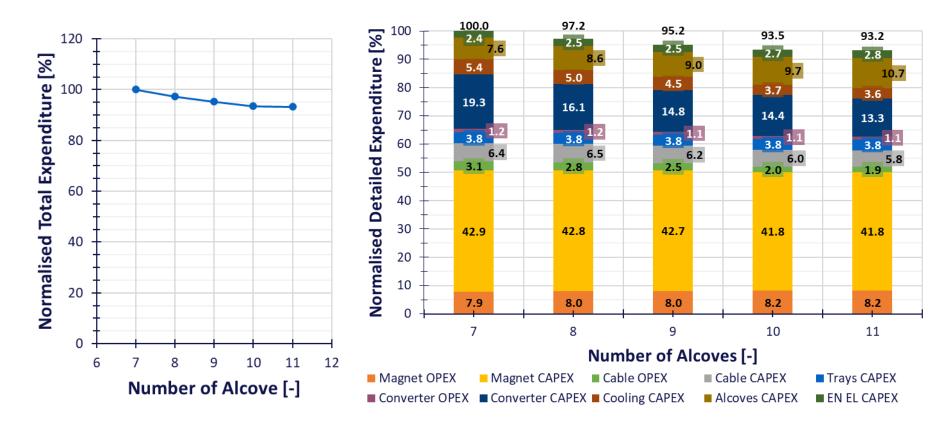
Following slides present optimised solutions, with varying constraints. The objective being: reaching the **minimum Total Expenditure** while complying with constraints.


Solver's evolutionary optimisation algorithm identify the most likely optimal solution, meaning the best solution found within the given time frame.

Weighting Factor set to 1 so far, meaning that Operation and Capital Expenditure have the same weight when optimising.

$TOTEX = \alpha * OPEX + CAPEX, \alpha = 1$

Increasing Number of Alcoves


Cost increase incurred by having more Alcoves is **outweighed** by the benefits of :

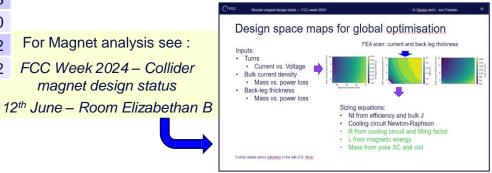
- Less cable length in the arc :
 - Lower voltage drop.
 - Lower converter power rating.
- □ Fewer cable numbers in the cable trays :
 - More room for bigger cable.

→ Lower Total Expenditure.

	CAPEX	OPEX
More Alcoves and Schedule Change	1	
More Electrical Equipment	$\overline{\mathbf{x}}$	
Reduced Cable length	+	+
Reduced Converter power rating	M	M
Reduced Cooling in the arc	\mathbf{M}	

Increasing Number of Alcoves

Optimising Collider Magnet Parameters


Collider Magnets	Current Density [A/mm ²]		Number of Turns [-]		
	FCC Week 23	Optimised Model	FCC Week 23	Optimised Model	
Dipole	1.010	1.845	1	1	
Quadrupole	2.150	2.475	25	36	
Sextupole	5.100	5.581	14	53	
Dipole Tapering	1.000	0.907	5	19	
Quadrupole Tapering	1.000	0.980	5	43	
Horizontal Corrector	1.400	3.625	48	10	
Vertical Corrector	1.200	3.050	48	22	
Skew Quadrupole	2.600	3.314	24	22	

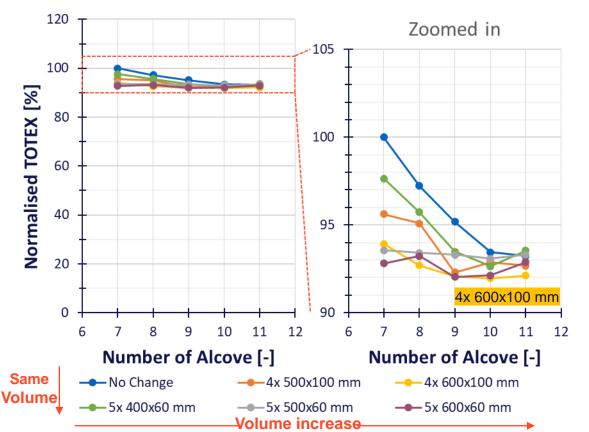
Best Magnet parameters found by the global optimisation at <u>9 Alcoves</u>.

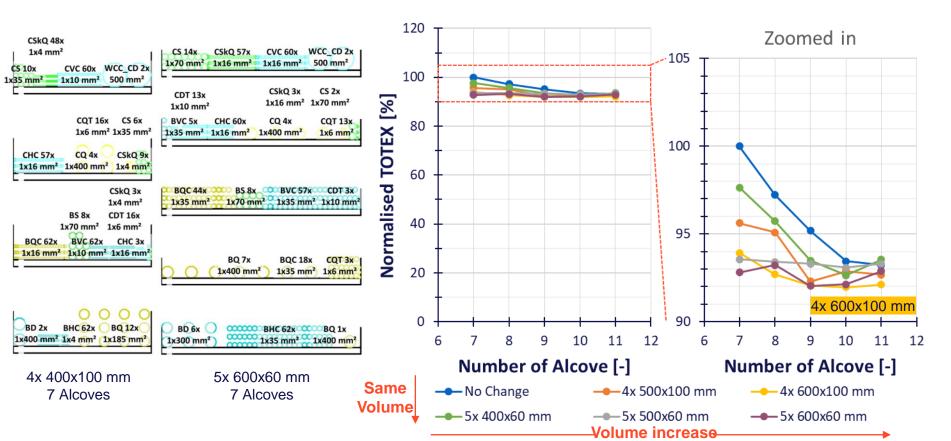
The global model optimisation tends to :

 Decrease current (higher number of turns) as it affects Cables and Converters.

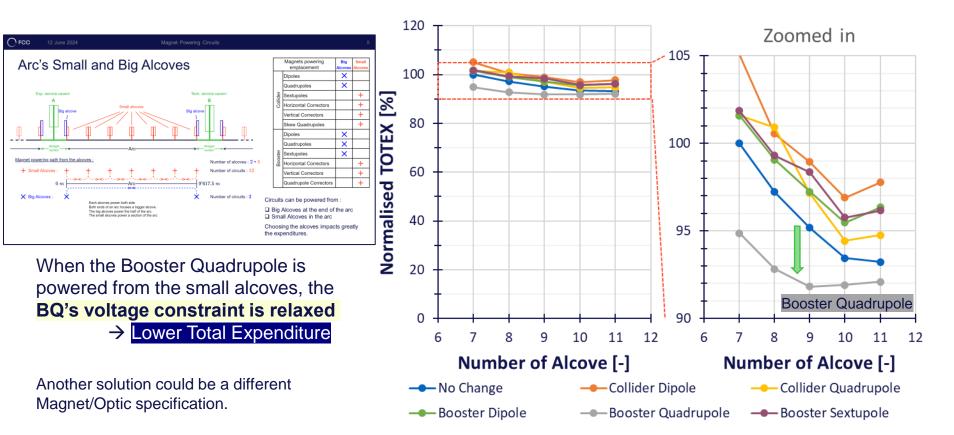
 Increase iron vs copper as it directly affect CAPEX of magnets.

Optimising Cable Trays Integration


When trying different Cable Trays, the more space we have the better, as it allow for bigger cables.


→ Lower Total Expenditure

When comparing same volume scenarios, the TOTEX changes due to **Cable Tray rules**.


NB : the total height allocation doesn't change (with overhang = 150 mm) $5x(60 + 150) \approx 4x(100 + 150)$

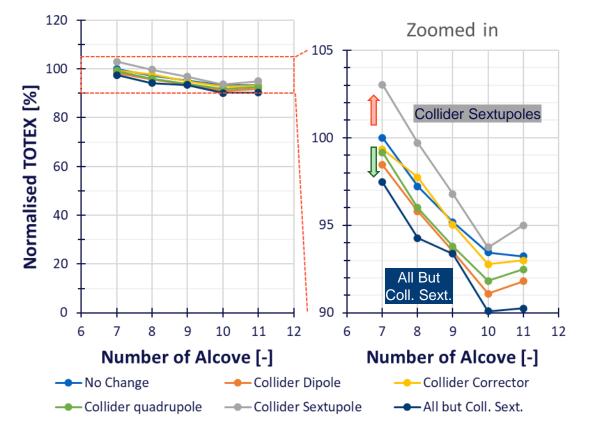
Only the width changes ; 400, 500 or 600 mm

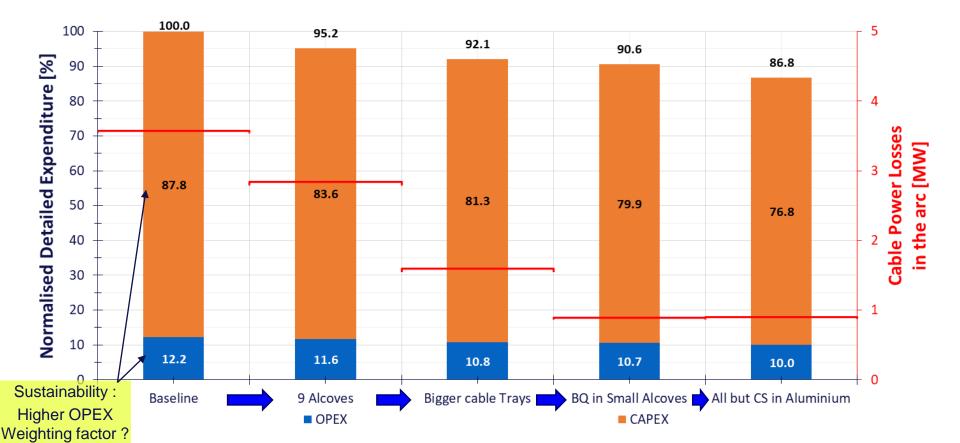
Powering from Small or Big Alcoves ?

Choosing Aluminium VS Copper Coils

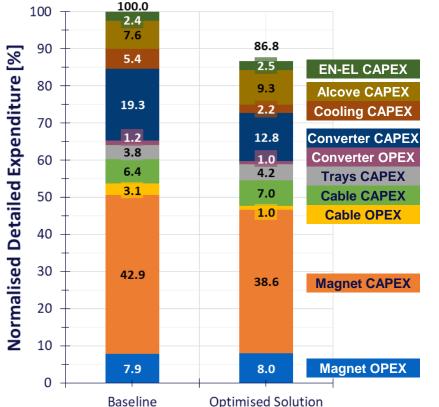
When using aluminium coils instead of copper, aluminium is less expensive in all cases except for the Collider Sextupole.

Aluminium is :


- □ ~3x cheaper
- □ ~1.6x less electrically conductive, for the same power, the coil is ~1.6x bigger.


Shield less radiation.

The **Collider Sextupole** is already over constrained by its footprint and cannot be bigger.


→ Higher Total Expenditure

NB: Aluminium Cable not yet considered

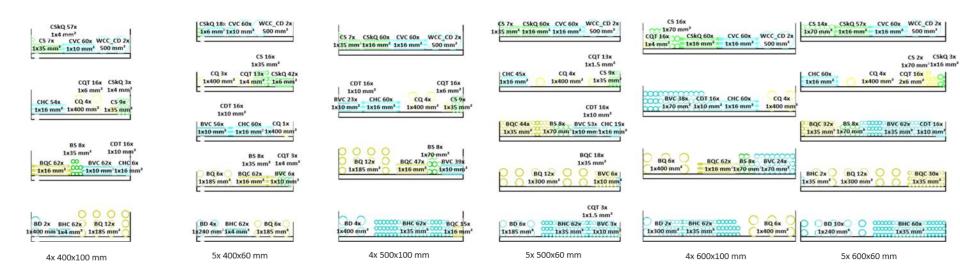
Conclusion – Optimised Solution

The Global Model found an optimised solution by considering Capital and Operational Expenditures.

Preliminary global optimisation results shows that:

- □ ≥9 alcoves per arc seems to be optimal
- **Bigger cable Trays** needed.
- Booster Quadrupole powered from Big Alcoves.
- □ Collider Dipole, Quadrupole and Corrector in aluminium coil.

What's next :


- Booster Magnet model with TE-MSC.
- □ Assessing certainty.
- □ Refining certain submodels.
- □ Fixing Optics parameters.
- Radiation Protection

```
• ...
```


Cable Trays Comparison

