
Key4hep: A Turnkey Software Framework for
Future Collider Experiments With Practical Advice
Juan Miguel Carceller (CERN) on behalf of the Key4hep authors

Key4hep: A Turnkey Software Framework for
Future Collider Experiments With Practical Advice
Juan Miguel Carceller (CERN) on behalf of the Key4hep authors

Introduction

•Turnkey software framework: Key4hep provides a complete data processing framework, from
Monte Carlo generation to data analysis

•Share components across different experiments and communities and avoid duplication of effort

• International community with participants from CEPC, CLIC, EIC, FCC, ILC and the Muon
Collider from CERN, DESY, IHEP, INFN and other institutes

Framework
(Gaudi)

k4geo

EDM4hep

•EDM4hep is an Event Data Model and the core component of Key4hep

•Common language that all the components in Key4hep speak

•The goal is to be both generic and address all the needs of the experiments
EDM4hep DataModel Overview (v0.10)

Monte Carlo DigitizationRaw Data
Reconstruction &

Analysis

MCRecoParticleAssociation

MCRecoTrackerAssociation

MCRecoCaloAssociation

MCRecoCaloParticleAssociation

Gaudi in Key4hep

•Gaudi is an event-processing framework, used by ATLAS, LHCb and others

•Key4hep provides an interface to Gaudi, enabling the execution of algorithms that read or
write EDM4hep data

•There are more interfaces: to Monte Carlo Generators, Geant4, Delphes and others

•Ongoing work in other integrations or algorithms like ACTS or Pandora

• Support for multithreading has been added recently

Detector studies with DD4hep

•Key4hep uses the DD4hep detector description framework based on Geant4

•The geometries of the detectors are stored in a common repository and deployed on cvmfs

•Users can easily test them and their different versions

• Steering files to run a full reconstruction chain are often provided

•Validation pipeline involving simulation and reconstruction to detect potential issues as the
detector evolves

FCC-ee Detector Concepts: CLD, IDEA and ALLEGRO

The Key4hep stack

•Complete software stack of over 500 packages that are deployed on cvmfs

•Nightly build and stable releases

•Built with spack, a community-driven package manager

•Supports multiple operating systems: Alma 9, CentOS 7 and Ubuntu 22.04

How to develop a package

•How to make changes to a package and test it or run it when working with the Key4hep stack:

$ source /cvmfs/sw-nightlies.hsf.org/key4hep/setup.sh

$ git clone https://github.com/user/package

$ cd package

$ k4_local_repo

$ # Make changes in the package

$ mkdir build; cd build

$ cmake ..

k4_local_repo will
remove any paths in the
current environment to
package (if it exists in
the stack) and add a
set of predefined ones

Tip: Use ccache to speed up recompilations. It’s included in the Key4hep stack so you only need
to add to the cmake command: -DCMAKE_CXX_LAUNCHER=ccache

Working with EDM4hep: Python bindings

•Almost everything can be done from Python

from podio.root_io import Reader
reader = Reader('myfile.root')
events = reader.get('events')
for frame in events:

coll = frame.get('MCParticleCollection')

import podio, edm4hep
writer = Writer('myfile.root')
coll = edm4hep.MCParticleCollection()

frame = podio.Frame()

frame.put(coll)

writer.write_frame(frame, 'events')

Reading Writing

•Working in Python will be slower than in C++! It’s good for exploration and prototyping but
production should be done in C++ (or calling compiled code)

Tip: You can use Python interactively as documentation for EDM4hep classes. For example, how
do I get the energy of a SimTrackerHit?

import edm4hep

hit = edm4hep.SimTrackerHit()

hit.get<TAB>

hit.getCellID(hit.getMCParticle(hit.getObjectID(hit.getPathLength(hit.getQuality(

hit.getEDep(hit.getMomentum(hit.getParticle(hit.getPosition(hit.getTime(

Press TAB to complete

•Works for every EDM4hep class

Starting a new Gaudi project

•Key4hep provides a template project to be used for projects that use Gaudi:
https://github.com/key4hep/k4-project-template

•Click“Use this template”→“Create a new repository”and follow the instructions in the README

Writing a Gaudi Algorithm

•Three types of Functional Gaudi Algorithms supported at the moment:

–Consumer: Takes inputs, but doesn’t have any outputs

–Producer: Has outputs but doesn’t take any inputs

–Transformer: Has both inputs and outputs

• Few examples from the template

•Plenty of examples in the k4FWCore repository

•Example of an algorithm that takes as input MCParticles and does something with them

struct ExampleFunctionalConsumer final : k4FWCore::Consumer<void(const edm4hep::MCParticleCollection& input)> {
ExampleFunctionalConsumer(const std::string& name, ISvcLocator* svcLoc)

: Consumer(name, svcLoc, KeyValues("InputCollection", {"MCParticles"})) {}

void operator()(const edm4hep::MCParticleCollection& input) const override {
if (input.size() != 2) {
fatal() << "Wrong size of MCParticle collection, expected 2 got " << input.size() << endmsg;

throw std::runtime_error("Wrong size of MCParticle collection");
}

}

};

Name Algorithm type Output Input

Input parameters and

default values

operator() has the same signa-

ture as the Consumer and this is

the code that runs for every event

For this example only the size of

the input is checked

Tip: Algorithms based on GaudiAlg (they inherit from GaudiAlg) will not work in the future,
inherit from Gaudi::Algorithm instead or (even better) use Gaudi::Functional

https://github.com/key4hep/k4-project-template

