Keydhep: A Turnkey Software Framework for
Future Collider Experiments With Practical Advice

Juan Miguel Carceller (CERN) on behalf of the Key4hep authors

How to develop a package

Introduction

® Turnkey software framework: Key4hep provides a complete data processing framework, from

. . ® How to make changes to a package and test it or run it when working with the Key4hep stack:
Monte Carlo generation to data analysis

$ source /cvmfs/sw-nightlies.hsf.org/key4hep/setup.sh

k4_local 1
$ git clone https://github.com/user/package —+0CaL_tepo W

remove any paths in the

® Share components across different experiments and communities and avoid duplication of effort

® International community with participants from CEPC, CLIC, EIC, FCC, ILC and the Muon
Collider from CERN, DESY, IHEP, INFN and other institutes

tEvent Data Model: EDM4hep

i Cj 12?;? I:-e%)current environment to
$ # Ma afiges in the package package (if it exists in

the stack) and add a
set of predefined ones

$ mkdir build; cd build
$ cmake

Generator | i jon) Recon- Analysis

struction

Overlay
Digitization
Tracking J

Tip: Use ccache to speed up recompilations. It's included in the Key4hep stack so you only need
to add to the cmake command: -DCMAKE_CXX_LAUNCHER=ccache

Whizard,
Pythia, ...

| Vertexing
Jet Clustering
Flavor Tagging

(GaUdi) — - |
[Detector Geometry: kdgeo (DD4hep)]

Working with EDM4hep: Python bindings

ED M4hep ® Almost everything can be done from Python
Reading Writing
® EDM4hep is an Event Data Model and the core component of Key4hep from podio.root_io import Reader import podio, edm4hep
® Common language that all the components in Key4hep speak reader = Reader('myfile.root') writer = Writer('myfile.root')
_ . _ events = reader.get('events') coll = edm4hep.MCParticleCollection()
® The goal is to be both generic and address all the needs of the experiments for frame in events: frame = podio.Frame()
EDM4hep DataModel Overview (v0.10) coll = frame.get('MCParticleCollection') frame.put(coll)
- writer.write_frame(frame, 'events')
RawcCalorimeterHit . ParticlelD
7— i L p— O ® Working in Python will be slower than in C++! It's good for exploration and prototyping but
| - ~— 17— Clust . : : :
CaloHitContribution e | “s§ production should be done in C++ (or calling compiled code)
@Q ‘AX:/I\/I;COP{;\?ASSOGMW @
NEERRE P> ReconstructedParticle Tip: You can use Python interactively as documentation for EDM4hep classes. For example, how
\\ j] \ do | get the energy of a SimTrackerHit?
- MCRecoTraCkerAssociation TrackerHit ‘44%/% Téa%(Vertex lmpOI‘t em4hep
SimTrackerHit = = TrackerHitPlane hit = edmdhep.SimTrackerHit () Press TAB to complete
T RAWTIMESENes | rackerPuise Reconstruction & @ N <TAB§>p > P
Raw Data Digitization Analysis 1t.gevs1abz 7
hit.getCellID(hit.getMCParticle(hit.getObjectID(hit.getPathLe
hit.getEDep(hit.getMomentum/(hit.getParticle(hit.getPositi
Gauch N Key4hep ® \Works for every EDM4hep class

® Gaudi is an event-processing framework, used by ATLAS, LHCb and others : : :
Starting a new Gaudi project

® Key4hep provides an interface to Gaudi, enabling the execution of algorithms that read or
write EDM4hep data

® There are more interfaces: to |\/|0nte Carlo Generators, Geant4, De|phes and Others ® Key4hep provides a template project to be used for projects that use Gaudi:

® Ongoing work in other integrations or algorithms like ACTS or Pandora https://github.com /key4hep/k4-project-template

® Support for multithreading has been added recently ® Click “Use this template” — “Create a new repository” and follow the instructions in the README

= kd-project-template rublictemplate .,

ﬁ Edit Pins ~ & Unwatch 8 ~ Y Fork 7 v ¢ Star 0 v Use this template ~

Create a new repository

Open in a codespace

Detector studies with DD4hep

® Key4hep uses the DD4hep detector description framework based on Geant4

Writing a Gaudi Algorithm

® The geometries of the detectors are stored in a common repository and deployed on cvmfs

® Users can easily test them and their different versions

® Steering files to run a full reconstruction chain are often provided ® Three types of Functional Gaudi Algorithms supported at the moment:

® Validation pipeline involving simulation and reconstruction to detect potential issues as the — Consumer: Takes inputs, but doesn’'t have any outputs

detector evolves — Producer: Has outputs but doesn't take any inputs

— Transformer: Has both inputs and outputs
® Few examples from the template
® Plenty of examples in the k4FWCore repository

® Example of an algorithm that takes as input MCParticles and does something with them

FCC-ee Detector Concepts: CLD, IDEA and ALLEGRO Naime Algorith]m type }utput Ineut

struct ExampleFunctionalConsumer final : k4FWCore: :Consumer<void(const edm4hep::MCParticleCollection& input)> {
ExampleFunctionalConsumer (const std::string& name, ISvcLocator® svcloc)

Input parameters and
: Consumer (name, svclLoc, KeyValues("InputCollection", {"MCParticles"})) {} P P

. . . . _ default values
vold operator() (const edmdhep: :MCParticleCollection& input) const override {

if (input.size(Q) '= 2) {
fatal() << "Wrong size of MCParticle collection, expected 2 got " << input.size() << endmsg;
throw std::runtime_error("Wrong size of MCParticle collection");

The Key4dhep stack

} T~ .
) \ operator () has the same signa-
® Complete software stack of over 500 packages that are deployed on cvmfs b For this example only the size of ture as the Consumer and this is
® Nightly build and stable releases the input is checked the code that runs for every event

® Built with spack, a community-driven package manager Tip: Algorithms based on GaudiAlg (they inherit from GaudiAlg) will not work in the future,

® Supports multiple operating systems: Alma 9, CentOS 7 and Ubuntu 22.04 inherit from Gaudi: :Algorithm instead or (even better) use Gaudi: :Functional

https://github.com/key4hep/k4-project-template

